A MANIFESTO CONCERNING THE LEGAL PROTECTION
OF COMPUTER PROGRAMS*

Pamela Samuelson, Randall Davis, Mitchell D. Kapor, & J.H. Reichman**

Introductioncooviiiiiiiiiiiiiiiiiiiiiiieiina.. cenenee.. 2310
1 Important Charactensncs of Computer Programs. ceereene.. 2315
1.1 Programs Behave...... Ceeeeeetieeeiaeaaaes ceerneee.. 2316

1.2 Programs Are Machines Whose Medrum of Construction
IsTeXt et cevenenn.. 2320

1.3 Many Programs Rely on Conceptual Metaphors to Or-
ganize Behavior ...l ceeeea.. 2324

1.4 Programs Are Industrial Compilations of Applied Know-
How et B 4. 2.4

1.5 Innovation in Programs Is Largely Incremental and Cu-
mulative in Charactercc.onen. cenren... 2330

2 The Industrial Compilations of Apphed Know-How in Pro-
grams Need Legal Protection that Existing Regimes Cannot

Provide......coovviiiiiiiiiiiiiiiiiiiiiin., P 2. . ¥4
2.1 Program Innovauons Are Vulnerable to Trivial Acquisi-
tions of Equivalence................... cieeeeeeenea.. 2333

2.2 Existing Legal Regimes Are Ill-Suited for Appropriate
Protection of the Industrial Compilations of Applied
Know-How Embodied in Programs.................... 2342

2.3 Use of Traditional Regimes to Protect Software Innova-
tions Will Lead to Cycles of Under- and
Overprotection e e veverern.. 2356

* The authors wish to thank the Kapor Family Foundation for its generous support of
nearly three years of monthly meetings that enabled the collaboration reflected in this
Article. We also thank the Foundation for funding that supported a symposium of
intellectual property scholars at Columbia University on April 22-23, 1994, to discuss a
preliminary draft. Generous funding for the April Symposium also came from the U.S.-
Japan Institute of Vanderbilt University and from the Julius Silver Program in Law,
Science, and Technology at Columbia Law School. The authors are grateful to the U.S.-
Japan Institute’s Director, James Auer, and to Harold Edgar, Director of the Julius Silver
Program, for their support, planning efforts, and willingness to cohost and participate in
the April symposium. We also wish to thank the participants in the April workshop for
their many stimulating comments, especially those who took the time to give us written
comments. We give special thanks to Wendy J. Gordon. Her spirited championing led to
the organization of the symposium and to the publication of this Article and its companion
article. We also specially thank Robert J. Glushko for his substantial support and
suggestions during critical stages in the writing of this Article. Lastly, we wish to thank
Ethan Stone for his remarkable editing.

** Pamela Samuelson is a Professor of Law at the University of Pittsburgh School of
Law. Randall Davis is a Professor of Computer Science and Associate Director of the
Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Mitchell D.
Kapor founded Lotus Development Corp. and designed Lotus 1-2-3. He is currently
Chairman of the Board of the Electronic Frontier Foundation. J.H. Reichman is a
Professor of Law at Vanderbilt Law School.

2308
HeinOnline -- 94 Colum. L. Rev. 2308 1994

1994] MANIFESTO 2309

2.4 Reasons Why Action Is Needed 2364

3 Rationale for a Market-Oriented Approach to the Protection
of Program Innovations...........coevevieiiiiniicnnenennns 2365
3.1 Genesis of the Market-Oriented Approach 2365

3.2 How a Market-Oriented Approach Might Differ from a
Traditional Intellectual Property Approach............ 2369
4 The Nature of the Software Market and Its Consequences .. 2371
4.1 Evolution of Software as a Product.................... 2372

4.2 Evolution of Distribution, Licensing, and Legal Protec-
tion Practices........c.ovvviiiiiiiiiiiiiiiiiiiiin 2373
4.3 Evolution of Competition...........covvvnvinninnnen.. 2374
44 Character of the Industry.......c.coovvenvninnininan.. 2376
4.5 ImPHCAtONS .. vvuureunrenneeunernneeneernerunrennenns 2378

5 Primary Dimensions of a Market-Based Legal Regime for the
Protection of Software Innovations......................... 2378
5.1 Overview of the Primary Dimensions.................. 2378
5.2 Commentary on the Entity Dimension 2382

5.3 Commentary on the Access Dimension: Of Dependent
and Independent Creationcoonaen. 2387
5.4 Commentary on the Similarity Dimension............. 2394

6 Principles and Goals for a Market-Oriented Approach to the
Protection of Software Innovations......................... 2405

7 Prototype Frameworks for a Market-Oriented Legal Regime
for the Protection of Software Innovations 2413
7.1 To Each According to Its Needscuu.ee 2413
7.2 Automatic Blockage of Cloningccovvvun.n. 2413

7.3 Automatic Anti-Cloning Protection Followed by an Auto-
matic Royalty-Bearing Licensecooonen 2414

7.4 SCPA-Like, Automatic Anti-Cloning Protection Plus Re-
gistration Approachc.ciiiiiiiiiiiiiiiiiiiian, 2415

7.5 Modified SCPA Approach: Some Automatic Protection
Complemented by Registration of Innovative

Elements ...oveurienieiiiiiiiiiienenneinennennennes 2417

7.6 A Market Segment Approachccovvviinnnen. 2418

7.7 An Improvements-Oriented Approach 2420

8 Alternative Courses of Actionccoviiiveienan.... 2420

8.1 Doing Nothingcoooviiiiiiiiiiiiiiiiiiiaaa.. 2421
8.2 The Minimal Change Option: Anti-Cloning Protection

.. 2422

8.3 A More Forward-Looking Approach: Investigation of a
Registration and Automatic Licensing System for
Software Innovationseoeviiiiiiiiniienenannn. 2426
Conclusionovviuiniiiiiiiiii i i i i 2429

HeinOnline -- 94 Colum. L. Rev. 2309 1994

2310 COLUMBIA LAW REVIEW [Vol. 94:2308

Introduction

Virtually all of the voluminous published literature! and public de-
bate about the legal protection of computer programs has focused on
how existing laws can or should apply to computer programs (e.g.,
whether copyright protects program user interfaces, whether algorithms
are patentable, etc.). As the Office of Technology Assessment recently
observed, there has been little normative analysis of the kind of legal pro-
.tection that would be socially desirable for software and how it might best
be accomplished.2 Such an analysis could articulate what aspects of pro-
grams are valuable, to what extent legal protection is needed for different
loci of value, and how legal protection of software should be tailored to
promote consumer welfare. Four years ago the authors of this Article—
two technologists and two lawyers—undertook such a normative analysis.
This article reports the results of our collaboration.?

In brief, we have concluded that while copyright law can provide ap-
propriate protection for some aspects of computer programs, other valua-
ble aspects of programs, such as the useful behavior generated when pro-
grams are in operation and the industrial design responsible for
producing this behavior, are vulnerable to rapid imitation that, left un-
checked, would undermine incentives to invest in software development.
These aspects may need some legal protection against cloning that ex-
isting legal regimes cannot provide. Most of the considerable controversy
about software protection, within the software industry and the legal com-

1. See generally David Bender, Protection of Computer Programs: The Copyright/
Trade Secret Interface, 47 U. Pitt. L. Rev. 907 (1986) (finding little conflict between
copyright and trade secret); Donald S. Chisum, The Patentability of Algorithms, 47 U. Pitt.
L. Rev. 959 (1986) [hereinafter Chisum, Algorithms] (arguing that algorithms are
patentable); Donald S. Chisum et al,, LaST Frontier Conference Report on Copyright
Protection of Computer Software, 30 Jurimetrics J. 15 (1989) [hereinafter LaST Frontier
Report]; Anthony L. Clapes et al,, Silicon Epics and Binary Bards: Determining the Proper
Scope of Copyright Protection for Computer Programs, 34 UCLA L. Rev. 1493 (1987)
(defending application of copyright to software); Dennis S. Karjala, Copyright, Computer
Software, and the New Protectionism, 28 Jurimetrics J. 33 (1987) (arguing for software
copyright protection linked to copyright’s piracy prevention policy); Peter S. Menell, An
Analysis of the Scope of Copyright Protection for Application Programs, 41 Stan. L. Rev.
1045, 1050 (1989) (arguing for application of copyright idea/expression merger doctrine
to allow standardized interfaces and diffusion of scientific ideas); Arthur R. Miller,
Copyright Protection For Computer Programs, Databases, and Computer-Generated
Works: Is Anything New Since CONTU?, 106 Harv. L. Rev. 977 (1993) (defending
CONTU recommendation to protect software with copyright); Raymond Nimmer &
Patricia A. Krauthaus, Copyright and Software Technology Infringement: Defining Third
Party Development Rights, 62 Ind. L.J. 13 (1986) (analyzing software copyright case law);
A. Samuel Oddi, An Uneasier Case for Copyright than for Patent Protection of Computer
Programs, 72 Neb. L. Rev. 351 (1993) (arguing that patents are appropriate for software).

2. See Office of Technology Assessment, United States Congress, Finding a Balance:
Computer Software, Intellectual Property and the Challenge of Technological Change 5
(1992) [hereinafter Finding a Balance].

3. “What a long, strange trip it’s been” The Grateful Dead, Robert Hunter,
Truckin’, on American Beauty (Warner Bros. 1970).

HeinOnline -- 94 Colum. L. Rev. 2310 1994

1994] MANIFESTO 2311

munity, has arisen when software developers have tried to use existing
legal regimes to protect these kinds of program innovations.* The au-
thors have been among those who have opposed efforts to stretch the
bounds of existing legal regimes to protect these aspects of programs.> In

4. See, e.g., Steering Committee for Intellectual Property Issues in Software, National
Research Council, Intellectual Property Issues in Software (1991) [hereinafter NRC
Report] (reporting a range of views on software protection issues expressed by members of
the software industry at a set of workshops on intellectual property rights); Finding a
Balance, supra note 2, at 125-55 (discussing differing views among lawyers on software
protection controversies).

5. Randall Davis was the court’s technical expert in Computer Assocs. Int’l, Inc. v.
Altai, Inc., 775 F. Supp. 544 (E.D.N.Y. 1991), aff’d in part, vacated in part, 982 F.2d 693
(2d Cir. 1992). He has written some articles on legal protection for computer programs
that are critical of some legal approaches to understanding programs. See Randall Davis,
Intellectual Property and Software: The Assumptions Are Broken, Address Before the
Proceedings of the WIPO Worldwide Symposium on the Intellectual Property Aspects of
Artificial Intelligence (March 25-27 1991) [hereinafter Davis, Broken Assumptions];
Randall Davis, The Nature of Software and Its Consequences for Establishing and
Evaluating Similarity, 5 Software L.J. 299 (1992) [hereinafter Davis, Nature of Software].

Mitchell Kapor has expressed concern about under- and overprotection of software
innovations by existing legal regimes. See Computers and Intellectual Property: Hearings
Before the Subcomm. on Courts, Intellectual Property, and the Administration of Justice
of the House Comm. on the Judiciary, 101st Cong., 1st Sess. 238 (1989) (testimony of
Mitchell D. Kapor); see also Simson L. Garfinkel et al., Why Patents Are Bad for Software,
Issues in Sci. & Tech., Fall 1991, at 50.

J-H. Reichman has written extensively about existing legal regimes’ limited ability to
protect what is most innovative and valuable about computer programs. He has suggested
a new paradigm for the appropriate protection of program innovations. See, e.g., J.H.
Reichman, Computer Programs as Applied Scientific Know-How: Implications of
Copyright Protection for Commercialized University Research, 42 Vand. L. Rev. 639 (1989)
[hereinafter Reichman, Applied Know-How]; Jerome H. Reichman, Electronic Information
Tools—The Outer Edge of World Intellectual Property Law, 24 Int’l Rev. Indus. Prop. &
Copyright L. 446 (1993) [hereinafter Reichman, Electronic Information Tools]
(conference version published at 17 U. Dayton L. Rev. 797 (1992)); J.H. Reichman,
Overlapping Proprietary Rights in University-Generated Research Products: The Case of
Computer Programs, 17 Colum.-VLA J.L. & Arts 51 (1992) [hereinafter Reichman,
Overlapping Rights].

Pamela Samuelson has argued explicitly for a sui generis form of legal protection of
computer programs. See Pamela Samuelson, Benson Revisited: The Case Against Patent
Protection for Algorithms and Other Computer Program-Related Inventions, 39 Emory
LJ. 1025, 1148-54 (1990) [hereinafter Samuelson, Benson Revisited]; Pamela Samuelson,
Creating a New Kind of Intellectual Property: Applying the Lessons of the Chip Law to
Computer Programs, 70 Minn. L. Rev. 471 (1985) [hereinafter Samuelson, Lessons of Chip
Law]; Pamela Samuelson, CONTU Revisited: The Case Against Copyright Protection for
Computer Programs in Machine-Readable Form, 1984 Duke LJ. 663, 764-69 (1984)
[hereinafter Samuelson, CONTU Revisited]. In other articles, she has argued for a narrow
scope of copyright protection for computer programs. See, e.g., Pamela Samuelson,
Computer Programs, User Interfaces, and Section 102(b) of the Copyright Act of 1976: A
Critique of Lotus v. Paperback, Law & Contemp. Probs., Spring 1992, at 311 [hereinafter
Samuelson, Critique of Paperback].

Reichman and Samuelson have participated in a number of briefs amicus curiae of
copyright professors in support of defense positions in software copyright cases. See Brief
Amicus Curiae of Copyright Law Professors, Lotus Dev. Corp. v. Borland Int’l, Inc., No. 93-
2214 (1st Cir. appeal docketed Dec. 14, 1994) reprinted in 16 Hastings Comm. & Ent. L.J.

HeinOnline -- 94 Colum. L. Rev. 2311 1994

2312 COLUMBIA LAW REVIEW [Vol. 94:2308

this Article, we argue that the software controversy has focused on the
right problem, but has raised it in the wrong legal milieu. The problem is
that behavior and other industrial design elements of programs are often
expensive to develop and inexpensive to copy. This makes it possible for
an imitator to produce a functionally indistinguishable program—a
clone—that the imitator can sell at a lower price. Competition from
these clones can destroy incentives to invest in software innovation. None
of the existing legal regimes is well-suited to solving this problem.

We are not the first to suggest a sui generis approach to legal protec-
tion of computer programs.® However, the idea of sui generis protection

657 (1994) [hereinafter Borland Amicus Brief]; Brief Amicus Curiae of Eleven Copyright
Law Professors, Sega Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992) (No. 92-
15655), reprinted in 33 Jurimetrics J. 147 (1992) [hereinafter Sega Amicus Brief]. They
have also occasionally consulted with defense counsel in software copyright cases.

Because of our opposition to extension of the bounds of existing legal regimes to
capture all valuable aspects of software, we have sometimes been characterized as
“antiprotectionists” (or worse). See, e.g., Anthony L. Clapes, Software, Copyright &
Competition: The “Look and Feel” of the Law 47 (1989) (describing Samuelson’s views as
technophobic); Anthony L. Clapes & Jennifer M. Daniels, Revenge of the Luddites: A
Closer Look At Computer Assocs. v. Altai, Computer Law., Nov. 1992, at 11 (characterizing as
Luddites those who regard computer programs as utilitarian works); Oddi, supra note 1, at
354 n.3 (characterizing Kapor as an antiprotectionist).

6. At one time, the World Intellectual Property Organization and the government of
Japan proposed a sui generis form of legal protection for computer programs. See World
Intellectual Property Organization, Model Provisions on the Protection of Computer
Software, 14 Copyright 6, 12-13 (1978) [hereinafter WIPO Proposal]; see also Dennis S.
Karjala, Lessons From the Computer Software Protection Debate in Japan, 1984 Ariz. St.
LJ. 53, 61-70 (describing Japanese proposal). There have also been many articles (apart
from those written by this Article’s authors, cited supra note 5) proposing a sui generis
form of legal protection for computer programs. See, e.g., Rochelle C. Dreyfuss,
Information Products: A Challenge To Intellectual Property Theory, 20 N.Y.U. J. Int'l L. &
Pol. 897 (1988); Elmer Galbi, Proposal for New Legislation to Protect Computer
Programming, 17 Bull. Copyright Soc’y 280, 283-92 (1970); Irwin R. Gross, A New
Framework for Software Protection: Distinguishing Between Interactive and Non-
Interactive Aspects of Computer Programs, 20 Rutgers Computer & Tech. L.J. 107, 177-86
(1994); Peter S. Menell, Tailoring Legal Protection for Computer Software, 39 Stan. L.
Rev. 1329, 1364-67, 1371 (1987); Robert H. Rines et al., Computer Software: A New
Proposal for Intellectual Property Protection, 29 J.L. & Tech. 3, 4 (1988); Richard H.
Stern, The Bundle of Rights Suited to New Technology, 47 U. Pitt. L. Rev. 1229, 1246-55
(1986); Vance F. Brown, Comment, The Incompatibility of Copyright and Computer
Software: An Economic Evaluation and a Proposal for a Marketplace Solution, 66 N.C. L.
Rev. 977, 1005-12 (1988); Mary B. Jensen, Comment, Softright: A Legislative Solution To
the Problem of Users’ and Producers’ Rights in Computer Software, 44 La. L. Rev. 1413,
1448-55 (1984); Virginia R. Lyons, Note, Carrying Copyright Too Far: The Inadequacy of
the Current System of Protection for Computer Programs, 12 Hastings Comm. & Ent. LJ.
81, 96-98 (1989); John C. Phillips, Note, Sui Generis Intellectual Property Protection for
Computer Software, 60 Geo. Wash. L. Rev. 997 (1992); see also Finding a Balance, supra
note 2, at 30-31 (discussing three options for protecting computer programs); Office of
Technology Assessment, United States Congress, Intellectual Property Rights in an Age of
Electronics and Information 81-84 (1986) [hereinafter OTA Report] (suggesting that
copyright law cannot be successfully applied to computer programs); John H. Barton,
Adapting the Intellectual Property System to New Technologies, in Global Dimensions of

HeinOnline -- 94 Colum. L. Rev. 2312 1994

1994] MANIFESTO 2313

for software has generally fallen out of favor since the United States,
Japan, and the European Union, among others, decided to use copyright
to protect programs.” This choice was recently elevated to a norm of in-
ternational trade when the Trade-Related Intellectual Property Rights
(TRIPS) component of the Uruguay Round of revisions to the General
Agreement on Tariffs and Trade (GATT) included a provision to provide
copyright protection to computer programs.®
While the recent Office of Technology Assessment (OTA) report
finds that copyright is proving a satisfactory means for protecting pro-
gram code against exact duplications,® it observes that there is a high
degree of controversy over scope-of-protection issues'® and suggests that
despite the advantages of incremental accommodation of software by ex-
isting law,
there are questions as to whether this process of accommoda-
tion can—or should—continue indefinitely. With respect to
software, there may be a point where it becomes preferable to
complement or substitute for the existing structures, rather than
extend the scope of copyright to fit certain aspects of software—
perhaps, cumulatively, at the expense of other types of works.11
The Office of Technology Assessment states that it may be easier for Con-
gress to achieve a proper balance in policy objectives through a sui
generis approach to software protection than could be achieved through

Intellectual Property Rights in Science and Technology 256, 266 (Mitchel B. Wallerstein et
al, eds., 1993) [hereinafter Global Dimensions] (*CONTU was almost certainly wrong in its
judgment that the copyright system should be used instead of a sui generis approach.”);
Gerald Dworkin, Copyright, Patents, and/or Sui Generis: What Regime Best Suits
Computer Programs?, in International Intellectual Law and Policy (Hugh Hanson ed,,
forthcoming 1995) (recommending keeping open mind about whether sui generis
protection might be preferable form of legal protection for software); Allen Newell,
Response: The Models Are Broken, the Models Are Broken!, 47 U. Pitt. L. Rev. 1023,
1024-34 (1986) (computer scientist offers reasons why a new model of legal protection
may be needed for computer software innovations).

7. The United States amended its copyright law in 1980 to extend the protection of
this law to computer programs. See Act of Dec. 12, 1980, Pub. L. No. 96-517, 94 Stat. 3015,
3028-29 (codified, as amended, at 17 U.S.C. §§ 101, 117 (1988)). Under pressure from
the United States, Japan adopted a copyright approach to the legal protection of software
as well, instead of the sui generis approach that it had considered. See Karjala, supra note
6, at 79. In 1991, the Council of the European Communities (as it was then known)
adopted a Directive instructing member states to adopt copyright law as a form of
copyright protection for software. See Council Directive 91/250, art. 1, 1991 OJ]. (L 122)
42 [hereinafter EC Directive].

8. See General Agreement on Tariffs and Trade—Multilateral Negotiations (the
Uruguay Round): Agreement on Trade-Related Aspects of Intellectual Property Rights,
Including Trade in Counterfeit Goods, 33 LL.M. 81, 87 (1994) [hereinafter GATT/TRIPs].
For a general discussion of GATT’s advantages as a means to deal with worldwide
intellectual property piracy, see Marshall A. Leaffer, Protecting United States Intellectual
Property Abroad: Toward a New Multilateralism, 76 Iowa L. Rev. 273, 300-03 (1991).

9. See Finding a Balance, supra note 2, at 22.

10. See id. at 150-55.

11. Id. at 8 (emphasis omitted).

HeinOnline -- 94 Colum. L. Rev. 2313 1994

2314 COLUMBIA LAW REVIEW [Vol. 94:2308

use of existing legal regimes wherein changes in scope of protection to
accommodate software might distort principles of protection as applied
to other categories of works.!? This Article offers a basis upon which such
a complementary or substitute legal regime might be constructed.

We begin in Section 1 by making manifest some characteristics of
computer programs that legal discourse about programs has obscured
from view.1® Although programs are texts and their texts can be valuable,
the most important property of programs is their behavior (i.e., the set of
results brought about when program instructions are executed). Also val-
uable is the industrial design responsible for producing behavior and the
conceptual metaphors that give behavior coherence. Section 2 shows
that these aspects of programs are vulnerable to rapid copying because
the know-how necessary to construct a functionally equivalent work is on
or near the “face” (i.e., the surface) of the product sold in the market-
place. Section 2 will also show that existing legal regimes cannot provide
remedies for appropriations of these kinds of program know-how.

Sections 3, 4, and 5 provide foundational concepts upon which to
build a new legal regime for the protection of the applied know-how
found in the design of program behavior. Section 3 explains why it is
desirable to take a market-oriented approach to providing legal protec-
tion to these aspects of software. The law should intervene only when it is
necessary to avoid the market failure* that can arise from rapid copying.
Section 4 discusses the evolution of the software market and characteris-
tics of the present industry of which a market-oriented legal regime
should be cognizant. Section 5 recommends consideration of three prin-
cipal factors to judge the likelihood of market failure from rapid copying:
(1) the nature of the entity protected, (2) the means by which a second
comer acquires access to the innovation and the degree of dependence

12. See id. at 26-27.

13. See, e.g., John A. Kidwell, Software and Semiconductors: Why Are We Confused?,
70 Minn. L. Rev. 533, 535-40 (1985) (suggesting that some of the confusion about
applying existing law to software is attributable to confusion about the nature of software).

14. We use the term “market failure” to refer to an other than optimal level of
investment in software development that results from the legal underprotection or
overprotection of its most valuable innovations. Economists use “market failure” to refer
to a variety of situations in which the norms of perfect competition have been violated,
including those involving “public goods.” See, e.g., Richard G. Lipsey & Peter O. Steiner,
Economics 426-27 (6th ed. 1981) (discussing “market failure”). One commonly
recognized public-goods problem is the market failure that arises from nonexcludability of
information innovations. Although intellectual property rights aim to overcome this
public-goods problem, they do so imperfectly. See, e.g., Robert D. Cooter & Thomas S.
Ulen, Law and Economics 45-49, 112-16 (1988). Our use of the term “market failure” is
consistent with the broader usage. We do not claim that the approach we recommend
here would cure all market failures in software or cure them perfectly, but we do think our
approach identifies a source of particularly harsh market failures arising from a mismatch
of software and existing legal regimes. It provides a basis for avoiding these market
failures, with an eye to keeping transaction costs low and to facilitating transfers unlikely to
occur under other regimes.

HeinOnline -- 94 Colum. L. Rev. 2314 1994

1994] MANIFESTO 2315

of the second comer’s product, and (3) the degree of similarity, both in
details and in target market, between the first and second products.

Sections 6 and 7 aim to provide a basis for implementing the market-
oriented legal regime whose concepts were discussed in the three previ-
ous sections. Section 6 describes a number of design principles and goals
that emerged from our discussion about how to construct such a regime.
Section 7 describes 2 number of possible legal mechanisms for imple-
menting a market-oriented approach and uses the design principles sug-
gested in Section 6 as criteria to judge the viability of the various mecha-
nisms considered. The approach that seems to match best with the
design principles is one that would provide software developers with a
market-preserving period of protection against cloning. We also suggest
that developers should have a certain period of time within which to reg-
ister their program design innovations; registration would provide com-
pensation for the reuse of the innovation by a second comer for a period
of time after the expiration of the anti-cloning blocking period. This
would mean that second comers would contribute to the research and
development costs incurred by innovators.

We do not provide details of a model statute. Rather, we contribute
a basic framework for constructing a new form of legal protection for
program innovations, hoping to facilitate and direct the political debate
which alone could fix the details of implementation. This debate should
include those in the software industry, lawyers who serve this industry,
economists, and others with a stake in legal protection of software innova-
tions, and should undertake to refine and particularize a legal mecha-
nism.!> Working from the preferred approach identified in the previous
Section, Section 8 discusses three policy options for accepting and imple-
menting this approach.

1 Important Characteristics of Computer Programs

Computer programs have a number of important characteristics that
have been difficult for legal commentators and decisionmakers to per-
ceive. First, the primary source of value in a program is its behavior, not
its text. Second, program text and behavior are independent in the sense
that a functionally indistinguishable imitation can be written by a

15. For example, while we suggest that the term of protection should be short, we
have refrained from endorsing any particular term of protection. Our central concern is
not with scope of protection as such, but rather with suitability of the protection to the
nature of computer programs, the innovations they embody, and the software
marketplace. Choosing a particular period of protection should be the end result of the
public debate that we are merely trying to frame in meaningful terms. Suggesting a
particular period of anti<loning protection is irrelevant to, and would distract readers
from, the analysis which leads us to suggest that there should be some anti-<loning
protection in the first place. The difficulty of tailoring intellectual property rights to
achieve the proper balance of incentives to avoid both under- and overprotection of
innovation is well known. See, e.g., Cooter & Ulen, supra note 14, at 135-49.

HeinOnline -- 94 Colum. L. Rev. 2315 1994

2316 COLUMBIA LAW REVIEW [Vol. 94:2308

programmer who has never seen the text of the original program. Third,
programs are, in fact, machines (entities that bring about useful results,
i.e., behavior) that have been constructed in the medium of text (source
and object code). The engineering designs embodied in programs could
as easily be implemented in hardware as in software, and the user would
be unable to distinguish between the two. Fourth, the industrial designs
embodied in programs are typically incremental in character, the result
of software engineering techniques and a large body of practical know-
how.

1.1 Programs Behave
1.1.1 Computer Programs Are Not Only Texts; They Also Behave

At first glance, a program appears to be a textual work. Source
code!® is clearly some form of text, even if in a strange language not easily
read by the casual observer. The view of programs as texts has been
widely adopted in the legal community.1?

While conceiving of programs as texts is not incorrect, it is seriously
incomplete. A crucially important characteristic of programs is that they
behave; programs exist to make computers perform tasks.!® Program be-
havior consists of all the actions that a computer can perform by execut-
ing program instructions. Among the behaviors commonly found in
word processing programs, for example, are copying text, deleting text,
moving text from one place to another, and aligning margins. Program
manuals typically contain a good description of much of a program’s be-
havior.?® Programs often compete on the basis of behavior; advertise-
ments routinely list the capabilities (i.e., “features” which are discrete
units of behavior) a program has that its competitors do not.2% Advertise-
ments for tax preparation programs, for example, may emphasize the va-

16. After the design for a program has been completed, programmers typically write
out (in a computer language such as FORTRAN, BASIC, G, or Pascal) the set of statements
or instructions that will constitute the program. This is known as “source code.”
Computers, however, cannot run source code; the code must first be converted to a
machine-executable form called “object code.” This is done with the use of programs,
known as compilers or assemblers. For a technically accurate discussion of source and
object code in the legal literature, see, e.g., Samuelson, CONTU Revisited, supra note 5, at
672-89.

17. See, e.g., Nat’l Comm’n on New Technological Uses of Copyrighted Works, Final
Report 9-10 (1978) [hereinafter CONTU Report]; Clapes et al., supra note 1, at 1511,

18. The copyright law implicitly recognizes this in its definition of computer program:
“A ‘computer program’ is a set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result.” 17 U.S.C. § 101 (1988)
(emphasis added); see Newell, supra note 6, at 1029, 1032 (pointing out importance of
program behavior).

19. See, e.g., User’s Guide, TouchBase Pro 3-6 (1993).

20. See, e.g., Advertisement for IBM OS/2, PC Week, June 20, 1994, at 62 (comparing
features of OS/2 and Windows 3.1). Features of computer programs are discussed infra
notes 304~312 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2316 1994

1994] MANIFESTO 2317

riety of tax forms they can handle (that is, the variety of tax-preparation
behaviors the program is capable of producing).

Behavior is not a secondary by-product of a program, but rather an
essential part of what programs are. To put the point starkly: No one
would want to buy a program that did not behave, i.e., that did nothing,
no matter how elegant the source code “prose” expressing that nothing.

Hence, every sensible program behaves. This is true even though
the program has neither a user interface,?! nor any other behavior evi-
dent to the user. When someone sends electronic mail, for example, she
will interact with a program that initiates transmission of the mail. This
program hands the message off to a sequence of other programs that see
to its delivery in a manner that is invisible to the user. The transmission
programs have neither user interfaces nor visible behavior. Nonetheless,
each behaves in ways important to the user.

1.1.2 Text and Behavior Are Largely Independent

Although the text of a program is designed to produce certain be-
haviors, program text and behavior are more independent than might be
readily apparent. That is, two programs with different texts—e.g., VP-
Planner and Lotus 1-2-3—can have completely equivalent behavior.22

A second comer can develop a program having identical behavior,
but completely different text through a process sometimes referred to as
“black box” testing.2® This involves having a programmer run the pro-
gram through a variety of situations, with different inputs, making careful
notes about its behavior. A second programmer?#* can use this descrip-

21. A user interface is that part of a program’s behavior that exists at the boundary
between the program and the outside world. It is akin to the skin or a membrane of an
organism. The user interface is the means by which the user and the program interact to
produce the behavior that will accomplish the user’s tasks, much as organs of touch, sight,
and hearing are the means by which human organisms interact with their environment.
Just as an organism’s behavior is conditioned upon, but is not equivalent to, the
functioning of its senses, the user interface of a program is not the same thing as the
program’s overall behavior. Some legal commentators have been confused about the
distinction between a program’s behavior and its user interface. See, e.g., Miller, supra
note 1, at 1007-08.

22. Two widely known examples of this phenomenon were the VP-Planner program
developed by Paperback Software and The Twin program developed by Mosaic Software.
The behavior of each was virtually identical to that of Lotus 1-2-3, a feature VP-Planner
boasted of in its manual. See Lotus Dev. Corp. v. Paperback Software Int’l, Inc., 740 F.
Supp. 37, 69-70 (D. Mass. 1990). Neither imitator had any access to the Lotus source
code.

23, See, e.g., Duncan M. Davidson, Common Law, Uncommon Software, 47 U. Pitt. L.
Rev. 1037, 1080-84 (1986) (discussing the black box metaphor and a model for how it
might be used in resolving software copyright disputes; under Davidson’s model, “black
box testing,” i.e., examining a program in operation, would be lawful).

24. “Clean-room” development involves having two teams of programmers, one of
which operates in a “clean room” (without access to or knowledge of the text of the
program being analyzed). The “dirty room” team of programmers analyzes another firm’s
program in order to extract information about it, such as information about its interface.

HeinOnline -- 94 Colum. L. Rev. 2317 1994

2318 COLUMBIA LAW REVIEW [Vol. 94:2308

tion to develop a new program that produces the specified behavior (i.e.,
functionally identical to the first program) without having access to the
text of the first program, let alone copying anything from it. A skilled
programmer can, in other words, copy the behavior of a program exactly,
without appropriating any of its text.

The independence of text and behavior is one important respect in
which programs differ from other copyrighted works. Imagine trying to
create two pieces of music that have different notes, but that sound indis-
tinguishable. Imagine trying to create two plays with different dialogue
and characters, but that appear indistinguishable to the audience. Yet,
two programs with different texts can be indistinguisable to users.

1.1.3 Behavior is Valuable

Behavior is not the only source of value in a program, but it is the
most important. People pay substantial sums of money for a program not
because they have any intrinsic interest in what its text says, but because
they value what it does and how well it does it (its behavior). The primary
proof that consumers buy behavior, rather than text is that in acquiring a
program, they almost never get a readable instance of the program text.
They acquire object code?> not source code, a text that is, at best, quite
obscure. Even so, shrink-wrap licenses purport to prohibit all sensible
ways of examining that text (i.e.,.disassembling or decompiling the object
code).26 Hence, when buying software in the retail market, consumers
buy behavior and nothing more. There is, by explicit arrangement, noth-
ing else in the package.

This team passes the information on to the “clean room” group of programmers who use
that information to reimplement the functionality. See NRC Report, supra note 4, at 77-
78. Because the “clean room” team has not had access to the text of the other program,
similarities in details of the two programs will generally be attributed to implementation of
the same functionality. See, e.g., NEG Corp. v. Intel Corp., 10 U.S.P.Q.2d (BNA) 1177
(N.D. Cal. 1989); see also Gary R. Ignatin, Comment, Let the Hackers Hack: Allowing the
Reverse Engineering of Copyrighted Computer Programs to Achieve Compatibility, 140 U.
Penn. L. Rev. 1999 (1992).

25. See supra note 16 for a discussion of object code.

26. Disks containing computer programs are often sold in a box covered with a
shrink-wrap. Many software developers put a printed form underneath the plastic sheeting
which advises prospective purchasers that they are only licensing the software and that this
license is subject to many restrictions. Such forms also tend to state that by opening the
package, the person will have agreed to be subject to all of the stated restrictions. A
number of commentators have questioned the validity of these shrink-wrap licenses, both
as a matter of contract law and as a matter of intellectual property policy. See, e.g.,
Thomas L. Hazen, Contract Principles as a Guide for Protecting Intellectual Property
Rights in Computer Software, 20 U.C. Davis L. Rev. 105, 112 (1986); David A. Rice,
Licensing the Use of Computer Program Copies and the Copyright Act First Sale Doctrine,
30 Jurimetrics J. 157 (1990). Decompilation and disassembly of program code is discussed
infra notes 89-91, 326-337 and accompanying text. A draft proposal to validate many
provisions of software shrink-wrap licenses is currently under consideration. See U.C.C.
§ 2-2203 (Draft Sept. 10, 1994).

HeinOnline -- 94 Colum. L. Rev. 2318 1994

1994] MANIFESTO 2319

Not only do consumers not value the text that .programmers write
(source code), they do not value any form of program text, not even ob-
ject code. Computer science has long observed that software and hard-
ware are interchangeable: Any behavior that can be accomplished with
one can also be accomplished with the other.2” In principle, then, it
would be possible for a purchaser of, say, a word processor to get a piece
of electronic hardware that plugged into her computer, instead of a disk
containing object code. When using that word processor, the purchaser
would be unable to determine whether she was using the software or the
hardware implementation.

Thus, to the user of a word processor, it is immaterial whether the
program is implemented in hardware or software. The user would just as
willingly buy the hardware as the software version, as long as it exhibited
the desired behavior. When buying the hardware version, there would be
no text in the package at all (not even the obscure text of object code).
Yet the value to the user would be unchanged.

All this stands in sharp contrast to traditional literary works which
are valued because of their expression (i.e., what they say and how well
they say it). Programs have almost no value to users as texts. Rather,
their value lies in behavior.

1.1.4 Programs with Identical Behavior Can Be Market Substitutes

If behavior is the primary source of value in a program, then the
potential for two programs to be behavioral equivalents is of considerable
competitive significance. Two programs that produce identical behavior
may, from the standpoint of consumers, be perfect market substitutes.28

The lawsuits concerning VP-Planner and The Twin illustrate this
point. There, the ability to create a program with identical behavior was
far more than a laboratory curiosity. The developers of these programs
hoped that their “work-alikes” would take some of Lotus’s share of the
market for electronic spreadsheet programs. Lotus sued Paperback and
Mosaic for infringement, hoping to forestall this erosion.2®

To a consumer, textual differences among programs are typically
neither discernible nor material to a purchasing decision. Hence, pro-
grams with identical behavior are market substitutes even if they have dif-
ferent text. This point will be of particular significance when we discuss

27. See, e.g., Terrence W. Pratt, Programming Languages: Design and
Implementation 19 (2d ed. 1984).

28. Factors that may cause consumers not to regard clone software as perfect
substitutes include the reputation of the innovator for reliability, the availability of service,
and access to updates, among other things.

29. Lotus won its lawsuit against Paperback, see Lotus Dev. Corp. v. Paperback, 740 F.
Supp. 37 (D. Mass. 1990), as well as against Mosaic. Paperback settled before appeal. See
Lotus Settles Copyright Case, N.Y. Times, Oct. 18, 1990, at C4. Mosaic went into
bankruptcy after Lotus won at the District Court level. See Lawrence Edelman, Lotus Halts
Action in ‘Twin’ Sales, Boston Globe, Apr. 3, 1991, at 30.

HeinOnline -- 94 Colum. L. Rev. 2319 1994

2320 COLUMBIA LAW REVIEW [Vol. 94:2308

whether copyright, which focuses on the text, is an optimal form of legal
protection for software.

1.2 Programs Are Machines Whose Medium of Construction Is Text

Traditional literary works, such as books, do not behave. Programs,
like other machines, do. Programs have a dual character because they
are textual works created specifically to bring about some set of behav-
iors. We attempt to capture this intriguing dual nature of software by.
describing software as a machine whose medium of construction happens
to be text.30

To say that software is a machine is not to make an abstract meta-
phorical statement. Computer programs and physical machines have
more in common than might be suggested by the legal description of
programs as texts. First, behavior is common to both of them. Physical
machines (e.g., automobiles, televisions) produce a variety of useful be-
haviors, and so it is with programs. They exist in order to “bring about a
certain result,”3! i.e., some behavior.32

Second, as noted above, programs can just as well be physical ma-
chines; an electronic device that plugged into the computer could deliver
identical behavior.33 In any given situation there may be reasons, such as
cost, that motivate developers to embody behavior in one form or the
other, but it is important to note that programs and physical machines
are completely interchangeable in the sense described.34

Third, programs, like other machines, often work together with
other programs (and with other machines) to bring about their results.

30. See Davis, Broken Assumptions, supra note 5, at 111.

31. This phrase is taken from the copyright statute’s definition of computer program,
see 17 U.S.C. § 101, but it applies equally well to other kinds of machines.

32. Traditional texts may tell humans how to do a task; they do not, however, perform
the task. .

33. See supra note 27 and accompanying text.

34. We do not mean simply providing the software in a hard-wired form like read-only
memory (ROM). In principle, the behavior of any program can be duplicated exactly by a
machine built from basic electronic components like transistors, AND gates, OR gates, and
so forth. So far, this equivalence has had modest commercial impact because mimicking
even a medium-size software program would require a very large collection of hardware.
Hence, the conversion rarely makes economic or engineering sense. Even so, some
patents have exploited it. For example, one patent concerns a means of controlling access
to data files by computer users. The patent describes a device constructed from digital
hardware, but notes revealingly: “To those skilled in the computer art it is obvious that
such an implementation can be expressed either in terms of a computer program
(software) implementation or a computer circuitry (hardware) implementation, the two
being functional equivalents of one another For some purposes a software
embodiment may likely be preferable in practice.” U.S. Patent No. 4, 135, 240 to Ritchie,
issued Jan. 16, 1979, at col. 5, line 48 (Protection of Data File Contents). In fact, this
particular “device” is (and has been) a part of every computer’s operating system, and as
such, as the patent author surely knew, would never be found in a hardware embodiment.
The author simply used the equivalence of the two to gloss over what was apparent to any
technical reader, and thus patented a piece of software as if it were a hardware device.

HeinOnline -- 94 Colum. L. Rev. 2320 1994

1994] MANIFESTO 2321

Application programs, for example, call upon operating system pro-
grams, which in turn call upon microcode programs for the execution of
program functions.

To enable a program to interact with other programs, a programmer
must make sure that it sends and receives signals in the manner required
by those programs.®> One of the critically important tasks of software
development is designing this information flow to allow interoperation.36
Software developers refer to this as designing the program’s “interface.”
Software interfaces are the information equivalents of the gear teeth,
levers, pulleys, and belts that physical machines use to interoperate.

Fourth, creating programs is a process of building and assembling
functional elements. Where physical machines are built from physical
structures like gears, wires, and screws, programs are built from informa-
tion structures, such as algorithms and data structures.3” In software,
these components must work together in a very carefully orchestrated way
that resembles nothing so much as an intricate mechanical device consist-
ing of thousands of delicate gears and levers. In a mechanical device, the
gear teeth must mesh exactly, and levers must move at just the right mo-
ments. If a single component of either a hardware or software machine
fails to work as intended, disastrous effects can propagate through the
rest of the machine in the blink of an eye. It is not an accident that a
program that fails is said to have “crashed.”

Fifth, like physical machines, programs are often large and com-
plex.®® Programs with hundreds of thousands of lines are common in
industrial applications. The largest programs consist of several million
lines of code.®® By comparison, a very complex mechanical device—such
as Boeing’s new 777 airliner—is composed of a few hundred thousand
distinct parts, with perhaps three million individual parts in total (count-

35. See, e.g., NRC Report, supra note 4, at 51-54.

36. See id. at 52 (“Software interfaces are often the product of significant investment,
creative activity, and engineering effort.”); see also Frederick P. Brooks, Jr., No Silver
Bullet: Essence and Accidents of Software Engineering, IEEE Computer, Apr. 1987, at 10,
12 (describing the complexity of conforming a program to other systems’ interfaces).

3%7. An algorithm is “a prescribed set of well-defined, unambiguous rules or processes
for the solution of a problem in a finite number of steps”; data is “a formalized
representation of facts or concepts suitable for communication, interpretation, or
processing by people or by automatic means”; a data structure is the structure of
relationships among data items. See Websters’ New World Dictionary of Computer Terms
(3d ed. 1988).

38. See, e.g, Brooks, supra note 36, at 11.

39. The operating systems for the IBM AS/400, which appeared in 1988, had 6.9
million lines of source code. See Edward Bride, Software Magazine: A Look Back, 11
Software Mag. 89 (1991). Windows NT, a follow-on operating system to Windows 3.1,
contained 4.3 million lines of code in May 1993 while still under development. See G.
Pascal Zachary, Climbing The Peak: Agony And Ecstasy Of 200 Code Writers Beget
Windows NT, Wall St. J., May 26, 1993, at Al.

HeinOnline -- 94 Colum. L. Rev. 2321 1994

2322 COLUMBIA LAW REVIEW [Vol. 94:2308

ing each nut and bolt).#0 Hence, the largest programs are roughly com-
parable in component count to some of the most complex mechanical
devices.

Although the number of components may be comparable, however,
building a program is generally a much more complex task than building
a physical machine. Unlike the designer of a physical machine, the
software engineer has no standard components. She cannot buy off-the-
shelf parts or sub-assemblies from suppliers. Typically, a programmer
writes every line of code afresh, no matter how large the program is, or
how common its tasks.*! To perceive the impact of this lack of standard
building blocks, imagine trying to design an entire car in complete detail,
down to the last fastener, without being able to assume the existence of
any standard parts at all (not even nuts, bolts, or screws). With programs,
every individual part has to be designed from scratch, and all of their
design elements must be tested under a variety of conditions to be sure

40. See Boeing Commercial Airplanes Group, Boeing 777 Fact Sheet (132,500 unique
parts, over three million total parts) (on file with the Columbia Law Review).

41. This is not a desirable state of affairs. It is one of the things that makes building
large programs difficult. Still, despite progress over the years, the standardized parts
available to software engineers are still relatively few and primitive.

Some progress has been made over the years in programming languages, as
developers have created “higherlevel” languages. Programming languages are
characterized in terms of their “level,” i.e., the extent to which the terms of the language
require the programmer to consider properties of the physical machine. The lowest level
language used to create applications is “assembly language,” which requires the
programmer to know and keep track of such details of the hardware as how many different
registers (places to store intermediate computations) there are in the machine. In the
earliest years of the industry many programmers wrote their applications in assembly
language, creating an individual instruction for each of the program’s operations.

“Higher-level” programming languages like FORTRAN (which dates back to the late
1950s), BASIG, and C contain a few basic tools. The higherlevel programmer must
describe each computation, but need not consider how a specific computer will implement
them. Higherlevel languages sharply reduce the level of detail in programming, and offer
advanced data and control structures. This speeds up coding considerably. However, even
in higher-level languages, there is rarely, if ever, any standardized source-code available,
and creating an application still involves designing and building all the needed
functionality from scratch.

There has been some progress beyond “higher-level” languages. PC operating systems
offer more functionality to the application programmer. Packages like X-Windows and
Visual Basic provide convenient platforms for building graphical interfaces. The trend
toward “object-oriented” programming may eventually produce standard program
components. For the moment, however, there are virtually none. See, e.g., Brooks, supra
note 36, at 14 (expressing doubts that object-oriented programming will bring about
substantial increases in software productivity).

Brooks argues that complexity is “an essential property” of software, and that there is
“no single development, in either technology or management technique, that by itself
promises even one order of magnitude in productivity, in reliability, in simplicity.” Id. at
10-11. Whether this is true or not, progress to date has been slow and painful, and the
applications programmer still designs almost every required nut and bolt.

HeinOnline -- 94 Colum. L. Rev. 2322 1994

1994] MANIFESTO 2323

they work.#2 This is one reason why programs are often so complex and
their design so difficult.

Thinking of software as a machine makes it clear that source code is
the medium in which a program is created, even though the value in a
program, as with other machines, lies in its behavior. The behavior of
software, like the behavior of other machines, can be either utilitarian or
fanciful. The behavior of most machines is utilitarian. Lawn mowers,
water pumps, and televisions, for example, all perform useful tasks, as do
word processors and spreadsheets. Some machines, however, have purely
fanciful behavior. Kinetic sculptures, for instance, are assemblages of
mechanical components carefully interconnected to produce certain be-
haviors that have no utilitarian purpose. Some physical machines pro-
duce both utilitarian and fanciful behavior. Elaborate clocks of the sev-
enteenth century not only kept time (a utilitarian task), but announced
its passage with an elaborate and artistic dance of human figures. Simi-
larly, some game programs create unusual worlds inhabited by artfully-
created characters. Software, like other media, can be used to construct
machines with utilitarian behavior as well as machines with fanciful
behavior.

Program text is, thus, like steel and plastic, a medium in which other
works can be created. A device built in the medium of steel or plastic, if
sufficiently novel, is patentable; an original sculpture built of steel or
plastic is copyrightable. In these cases, we understand quite well that the
medium in which the work is made does not determine the character of
the creation. The same principle applies to software. The legal character
of a work created in the medium of software should no more be deter-
mined by the medium in which it was created than would be a work made
of steel or plastic. In this respect, it makes no more sense to talk about
copyrighting programs than to talk about copyrighting plastic or steel; it
confuses the medium of creation and the artifact created. In the case of
software, the artifact created is some form of innovative behavior,
whether utilitarian or fanciful.

All of this has implications for selecting a protection mechanism ap-
propriate to software.#> Much of the legal commentary concerning

42. The lack of available component parts for software means complexity of another
kind. A computer manufacturer, for example, that buys a power supply in the market
receives not only the physical part (which it therefore does not have to design and build
independently), but also clears itself of obligations to any patent owner for royalties,
because a license to use any patents will be built into the purchase price. The situation is
quite different with software, where virtually all components must be built from scratch. A
software designer takes the risk that one of the thousands of small components he or she
has designed and implemented in building a large program will be covered by a patent.
All industrial designers face this problem, but with software, the task of checking for patent
infringement is quantitatively different: Consider the vastly increased difficulty of
checking automobiles for patent infringement if all automobile components were
independently designed and constructed, rather than assembled from available parts.

43. See infra notes 156-171 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2323 1994

2324 COLUMBIA LAW REVIEW [Vol. 94:2308

software has conceived of it as text and hence taken literary works as the
predominant metaphor. We suggest that programs should be viewed as
virtual machines and that this has interesting consequences for the
proper form of protection.

1.3 Many Programs Rely on Conceptual Metaphors to Organize
Behavior

Programs often create a new conception of the tasks they accomplish
by providing a metaphor for engaging in the task. The metaphor often
enables the creation of new kinds of objects that behave in interesting
ways, thereby bringing about a new, synthetic reality, which we term a
“virtuality.”#* One of the best known of these metaphors is the word
processor.*> Word processing programs use the conceptual metaphor of
paper to provide users with the illusion that they are working with paper
(what we might call “virtual paper”). Yet they also extend the concept of
paper because word processing paper can do some things that ordinary
paper cannot. On ordinary paper, insertions or deletions of text can be
difficult and messy. On word processing paper, the old text obligingly
moves over to make room for the new words or closes ranks to fill in a
gap left by a deletion. Cutting and pasting a chunk of text on ordinary
paper produces a fragmented document; word processing paper instanta-
neously heals from the surgery. Making a minor change to a paper docu-
ment (e.g., changing pagination) may mean retyping the entire work.
On word processing paper, one can easily make incremental changes.
The user simply makes the change, and the “paper” takes care of the rest.

The behavior of a well-designed program has an overall coherence
that often derives from its conceptual metaphor.#®¢ By coherence, we
mean that the whole is more than a simple juxtaposition of the constitu-
ent behaving parts. It is instead a well-orchestrated collection that pro-
duces a comprehensible overall behavior. Word processing software, for
example, is far from an arbitrarily chosen compilation of behaviors. The
notion of a special kind of paper is the basic metaphor that drives and
organizes the program’s behavior so that it produces a coherent image to
the user.

44, See, e.g., NRC Report, supra note 4, at 55-56. User interface designer Bruce
Tognazzini speaks of the goal of user interface design as “ ‘creating an illusion that does
not break down.” ” Id. at 55.

45. Another well-known example is the desktop metaphor for defining the work space
upon which users work with computers. See Bill Curtis, Engineering Computer “Look and
Feel™: User Interface Technology and Human Factors Engineering, 30 Jurimetrics J. 51,
6061 (1989).

46. As the NRC Report notes, “the behavior and the visual appearance of the objects
in the illusion created on a computer screen, be it a spreadsheet display or a flight
simulation, must mesh perceptually with all applications that use the interface.” NRGC
Report, supra note 4, at 55 (paraphrasing Bruce Tognazzini).

HeinOnline -- 94 Colum. L. Rev. 2324 1994

1994] MANIFESTO 2325

Coherence is a valuable element of behavior, particularly for users.
Coherent behavior can help the user anticipate what to expect and un-
derstand what the program has done or is doing. Coherence in program
behavior often results from the conceptual metaphors the program uses.
Thus, conceptual metaphors are valuable as organizing principles for
program behavior, as well as for the virtual worlds and objects they create.
Much of the value in a spreadsheet program, for instance, arises from the
rich metaphor it provides for organizing or thinking about the task. Even
referring to it as a spreadsheet is revealing: Using it does not make us
think we are using software, but rather that we are using a particular tool
that enables us to have a particular kind of experience.

Conceptual metaphors are also significant because they can change
the nature of and the user’s experience of the task.4’ Cutting and pasting
(in a virtual sense) is so easily accomplished in a word processor that one
soon begins to think of the text as a physical entity that can be picked up
and moved around. A sentence, a paragraph, or an entire chapter now
becomes a portable object, rather than letters wedded to a single location
on the page. Word processing paper thus offers a virtuality in which text
and ideas can be rapidly and repeatedly organized and reorganized. The
experience of incremental editing is similar. Changing a word and re-
doing the document is no longer a daunting undertaking. Instead, we
routinely go through dozens of drafts.

Spreadsheet programs illustrate even more starkly the power that
conceptual metaphors have to change the user’s experience of the task.
Foremost among the conceptual metaphors of spreadsheet programs is
the notion that tables of numbers are “alive.” The software recalculates
sums in response to different data entries, where a paper spreadsheet
merely provides a passive framework for recalculation. Use of a spread-
sheet now means only having to describe the relationship between entries
in the table (e.g., that one entry should be the sum of the numbers above
it) and entering the data.#® The automated spreadsheet metaphor has so
fundamentally changed the experience of using a computer that users
feel they are using a spreadsheet, not just a computer.

The value attributable to powerful conceptual metaphors in pro-
grams can be made in more objective terms as well. The first automated
spreadsheet program was VisiCalc which appeared in 1979. In the fifteen
years since, numerous firms have gone into business making spreadsheet
programs, and millions of copies of spreadsheet programs have been

47. Indeed, the conceptual metaphors can be powerful even if they do not rely on
pre-existing physical entities, such as paper. One user interface designer speaks of user
interface designers as “illusionists who, unconstrained by their medium, create their own
natural laws.” NRC Report, supra note 4, at 55.

48. Before the advent of spreadsheet programs, someone who wanted to use a
computer to do calculations had to write a program for each calculation. Spreadsheet
programs allow users to accomplish complex calculations without knowing how to

program.

HeinOnline -- 94 Colum. L. Rev. 2325 1994

2326 COLUMBIA LAW REVIEW [Vol. 94:2308

sold.#® Thus, a new metaphor is not merely a way to organize old tasks, it
can be a powerful tool that qualitatively changes the task. An innovative
conceptual metaphor is one of the most valuable types of software innova-
tion. Spreadsheet programs, for instance, were the class of application
program that spurred the first powerful surge in acquisitions of personal
computers.’® The power of this conceptual metaphor created a revolu-
tion in the use of computers.

The legal regime that protects software should find some way to pro-
tect the effort that produces such valuable new tools. In the current re-
gime this does not appear likely. Although conceptual metaphors are
important sources of innovation in software products, they are remote
from the program text. Partly because of this and partly because of their
abstract character, they would likely be regarded as unprotectable by
copyright law.5?

1.4 Programs Are Industrial Compilations of Applied Know-How

1.4.1 Program Construction Requires Selection and Arrangement of
Useful Components

Even programs that employ imaginative conceptual metaphors must
be carefully constructed by the programmer. This construction process
involves selecting and arranging components so that the software
machine produces the desired behavior. Computer programs are inher-
ently compilations of sub-components. The most obvious evidence of this
is that programs are built from programs. Programmers routinely work
by decomposing large tasks into smaller sub-tasks and sub-sub-tasks. They
write a sub-program to accomplish each of the smaller tasks, then orches-
trate the sub-programs’ interaction so that the combination works to-
gether to accomplish an overall task. This innocuous-sounding idea is an
important technical notion, key to understanding software development.
It is used widely and is essential in building any nontrivial program.

Crucially, there is no material difference between a “task” and a “sub-
task.” The prefix indicates only the relation between them. Thus, pro-

49. See International Data Corp. Report IDC #7862, Professional Support Tools:
1993, Worldwide Markets and Trends 20 (1993) (reporting $1.226 billion in spreadsheet
and other business tool software produced by Microsoft, Lotus, and Borland).

50. VisiCalc was a compelling application——an application so important that it,

alone justified the computer purchase. Such an application was the last element

required to turn the microcomputer from a hobbyist’s toy into a business
machine. No matter how powerful and brilliantly designed, no computer can be
successful without a compelling application. To the people who bought them,
mainframes were really inventory machines or accounting machines, and
minicomputers were office automation machines. The Apple II was a VisiCalc
machine.

Robert X. Cringely, Accidental Empires 64 (1992).

51. See LaST Frontier Report, supra note 1, at 29 (describing conceptual metaphors
as “ideas”).

HeinOnline -- 94 Colum. L. Rev. 2326 1994

1994] MANIFESTO : 2327

grams are built from programs. Many programs.on the market today il-
lustrate this clearly: they are composites of programs, each of which
could exist separately. Spreadsheets, for example, typically combine cal-
culation, graphing, and database components (among others), each of
which is itself a useful program.)

Programs are compilations in another sense as well. Even the small-
est sub-program is also a compilation of sub-components. Programmers
construct sub-programs by assembling into a coherent whole such dis-
crete program elements as data, data structures, and algorithms.52 The
“engineering” in software engineering involves knowing how to assemble
these components to produce the desired behavior.

1.4.2 Programs Are Compilations of Useful Behavior

Because programs are inherently composite in character (larger pro-
grams are built from smaller programs) and because programs behave,
we say that programs are compilations of behavioral components. That
is, a program is fundamentally a compilation whose constituent elements
are behaviors.

Each of the behaviors is, in turn, carefully designed so that, col-
lected, they work together to produce the overall desired behavior. Every
sub-program captures a small insight about what behavior is needed and
how to accomplish it. Every sub-assembly of components captures in-
sights about how smaller behaviors can combine to produce the desired
overall behavior. Hence programs are not just compilations of behavior,
they are compilations of useful behavior, a carefully selected collection of
utilitarian components working together.52

1.4.3 Constructing Programs Is an Industrial Design Process

Once one understands that programs are machines that happen to
have been constructed in the medium of text, it becomes easier to under-
stand that writing programs is an industrial design process akin to the

52. See supra note 37.

53. This is true even when the program produces behavior that is fanciful in
character. A program that creates an image on a screen, for instance, must be carefully
designed to do this task, no matter how fanciful the resulting image, just as would a
mechanical device designed to create the same image on paper. The mechanical device
would have to be carefully designed and built to ensure, among other things, that the ink
ends up on the paper (rather than on the floor), that it is dispensed in appropriate
amounts in the appropriate places, etc. So it is for a program to do the same task: like any
machine, it behaves, and the behavior must be carefully designed and constructed in order
to put the appropriate bits of color on the screen at appropriate places. Hence the
program that creates a fanciful work is still a machine, and that machine is quite distinct
from the fanciful work created; a mechanical device hardly becomes a work of art simply
because it is capable of producing a work of art, any more than a human author becomes a
literary work as a result of having written a novel.

HeinOnline -- 94 Colum. L. Rev. 2327 1994

2328 COLUMBIA LAW REVIEW [Vol. 94:2308

design of physical machines.>* Each stage of the development process
requires industrial design work: from identifying the constraints under
which the program will operate, to listing the tasks to be performed (i.e.,
determining what behavior it should have), to deciding what component
parts to utilize in bringing about this behavior (which in the case of
software, includes algorithms and data structures), to integrating the
component utilitarian elements in an efficient way.55

A substantial amount of the skilled effort of program development
goes into the design and implementation of behavior.5¢ Designing be-
havior involves a skilled effort to decompose the overall, complex task
(e.g., word processing) into a set of simpler sub-tasks requiring simpler
behaviors (e.g., deleting a character). Constructing the interaction of
these sub-tasks to produce useful behaviors (e.g., deciding whether the
“delete word” command should be implemented as a sequence of delete
character commands) also requires design skill. Knowing how and where
to break up a complicated task and how to get the simpler components to
work together is, in itself, an important form of the engineering design
skill of programmers.>?

The goal of a programmer designing software is to achieve func-
tional results in an efficient way.5®8 While there may be elements of indi-
vidual style present in program design, even those style elements concern

54. For in-depth discussions for legal protection for industrial design, see generally,
J-H. Reichman, Design Protection after the Copyright Act of 1976: A Comparative View of
the Emerging Interim Models, 31 J. Copyright Soc’y U.S.A. 267 (1984) [hereinafter
Reichman, Design Protection after 1976] (arguing for more comprehensive design
protection); J.H. Reichman, Design Protection in Domestic and Foreign Copyright Law:
From the Berne Revision of 1948 to the Copyright Act of 1976, 1983 Duke LJ. 1143
[hereinafter Reichman, Design Protection 1948-1976] (discussing different approaches to
protecting designs).

55. See, e.g., NRC Report, supra note 4, at 45-46 (describing Dan Bricklin’s model of
the software development process); Brooks, supra note 36, at 11 (“The essence of a
software entity is a construct of interlocking concepts: data sets, relationships among data
items, algorithms, and invocations of functions. . . . I believe the hard part of building
software to be the specification, design, and testing of this conceptual construct"”)
(emphasis omitted).

56. For articles emphasizing the importance of design in the development of software,
see Brooks, supra note 36, at 18; Mitchell Kapor, A Software Design Manifesto, 16 Dr.
Dobbs J. 62 (1991).

57. See, e.g., NRC Report, supra note 4, at 45 (“ ‘[It] isn’t the programming that is
hard; it is figuring out what we’re trying to do that is hard.’ ") (quoting Randall Davis).

58. The software copyright case law has recognized this point. See, e.g., Computer
Assocs. Int'l, Inc. v. Altaj, Inc., 982 F.2d 693, 708 (2d Cir. 1992). It is worth noting that
efficiency must always be measured in terms of the programmer’s goals. A design that is
highly efficient in conserving memory may not be highly efficient in speed of execution.
There is, as a consequence, no one “most efficient” design for a software program. Any
well-designed program is as efficient in relation to its design goals as its developers have
been able to make it, given their skill and the constraints under which they were operating,.
Furthermore, the case law has recognized that two programmers working separately on the
same industrial design problem in software may happen upon the same efficient solution,
For this reason, the Second Circuit stated in Altai that, in determining software copyright

HeinOnline -- 94 Colum. L. Rev. 2328 1994

1994] MANIFESTO 2329

issues of industrial design, e.g., the choice of one or another program-
ming technique or the clarity (or obscurity) of the functional purpose of
a portion of the program.>®

1.4.4 The Industrial Design and Construction of Programs Rests on a
Large Body of Skilled Know-How

Programmers use a substantial body of know-how in the design and
implementation of programs. By “know-how” we mean “the totality of
unpatented knowledge utilized in industry,”6° which embodies “ ‘detailed
innovation in industrial techniques’ of a practical nature that is often the
‘fruit of . . . experience and trial and error.’ ”6!

Programmers acquire know-how in a number of different ways.
Many acquire it through formal training. The curricula of computer sci-
ence and related disciplines®? formalizes know-how pertaining to the
building blocks of programs. Additional formalized know-how can be
found in the proceedings of the many computer-related conferences and
professional journals that are published in this field.®® Texts and journals
in the field typically describe program elements at the level of algorithms
and data structures,5¢ rather than literal code, because the details of pro-

infringement, courts should ignore the defendant’s use of efficient design elements
identical to the plaintiff’s. See id. at 709.

59. Designers of physical machines sometimes also exhibit elements of personal style
in their work. See, e.g., Seymour M. Hersh, A Case Not Closed, The New Yorker, Nov. 1,
1993, at 80, 85-88 (discussing search for elements of personal style in the wiring work of
terrorist bombers). Many small details indicative of personal style in source code, such as
the naming of variables, tend to be eliminated from the program when the source code is
processed by an optimizing compiler to produce object code.

60. See Francois Dessemontet, The Legal Protection of Know-How in the United
States of America 11 (H.W. Clarke trans., 2d ed. 1976). See also sources cited in
Reichman, Applied Know-How, supra note 5, at 656.

61. Reichman, Applied Know-How, supra note 5, at 656 (quoting 3 Stephen P. Ladas,
Patents, Trademarks and Related Rights: National and International Protection 1617
(1975)). Know-how, of course, exists at every phase of all industrial product cycles, from
conception, to design, to initial implementation, to volume manufacturing, distribution,
marketing, service, and so forth. Here we focus on know-how pertinent to the design and
implementation of program development because software development is “all design and
no manufacture.” NRG Report, supra note 4, at 44.

62. User interface design, for example, is often taught in the cognitive science
programs of psychology departments.

63. Two major associations to which many computing professionals belong are the
Institute of Electrical and Electronics Engineers (IEEE) and the Association for
Computing Machinery (ACM). These associations sponsor many conferences each year on
specialized subfields, such as software maintenance, user interface design, and computer
graphics. They also publish numerous journals of interest to computing professionals,
some of which, such as IEEE Computer and Communications of the ACM, are of a more
general nature, and some of which are highly specialized, such as the ACM SIGCHI
Bulletin (for designers of computer-human interactions).

64. Typical texts describe a few dozen basic data structures and several dozen basic
algorithms. See, e.g., Thomas H. Cormen et al., An Introduction to Algorithms (1990)
(1000 page book describing a wide variety of data structures and algorithms); Donald E.

HeinOnline -- 94 Colum. L. Rev. 2329 1994

2330 COLUMBIA LAW REVIEW [Vol. 94:2308

gramming languages and particular hardware systems (which would be
needed for discourse at the code level) are sufficiently complex that fo-
cusing on them would obscure, rather than clarify, know-how pertinent to
program construction.®> Specialized texts describe data structures and
algorithms appropriate for particular tasks.56 This formalized know-how
is part of the expertise of a good programmer.

As in many other engineering fields, practitioners acquire addi-
tional, less formal know-how on the job. Programmers acquire much of
this know-how by developing programs themselves and by working with
others in teams. They also pick up informal know-how through ex-
changes at conferences, electronic bulletin boards, and other electronic
messages.

All of this applied know-how, both formalized and tacit, forms the
core knowledge at the heart of the skill of programming.

1.5 Innovation in Programs is Largely Incremental and Cumulative in
Character

Innovation in software development is typically incremental.? Pro-
grammers commonly adopt software design elements—ideas about how
to do particular things in software—by looking around for examples or

Knuth, Sorting and Searching (4th ed. 1975) (volume of multivolume set of books on
algorithms, devoted to sorting algorithms).

65. That is, the code adds detail that is relevant only to the implementation, not to
the basic concept of any particular data structure or algorithm,

66. See, e.g., Andrew S. Tanenbaum, Operating Systems: Design and Implementation
218-17 (1987) (discussing page replacement algorithms, a key element in operating
systems that use virtual memory).

67. See, e.g., Harlen Mills, Top Down Programming in Large Systems, in Debugging
Techniques in Large Systems 40, 44 (R. Ruskin ed., 1971); Brooks, supra note 36, at 18,
We use “innovative” to describe products of skilled effort that advance the state of the art
but do not meet the patent standard of nonobviousness. Kingston uses the term in a
different sense. He defines innovation as taking an invention through to commercial
practice, including

the introduction and full working of a manufacture Expenditure of personal

effort and capital . . . it was understood that the public would be instructed in the

new technology by . . . [the innovator’s] personal supervision of the business,

which would be a tangible example, capable of being followed.

The way in which this practice of exchanging monopoly for novelty
developed historically, however, led to Patents for invention instead of
innovation. Wherever Patents are granted today, they relate only to information,
not to that information embodied, working, and tangible.

William Kingston, The Unexploited Potential of Patents, in Direct Protection of
Innovation 1, 2 (William Kingston ed., 1987) [hereinafter Direct Protection]; see also id. at
31 (“Itis of the very nature of [incremental innovation] that it evolves out of what is already
there. There is a sense in which each increment in any evolutionary process is actually
implicit in its predecessor, and it, in turn, points towards its own successor.”); William
Kingston, Advantages of Protecting Innovation Directly, in Direct Protection, supra, at 87,
107 (“What characterizes this type of innovation more than anything else, is that once it
has been done, nothing is easier than to reconstruct it from the elements of prior art.”).

HeinOnline -- 94 Colum. L. Rev. 2330 1994

1994] MANIFESTO 2331

remembering what worked in other programs. These elements are some-
times adopted wholesale, but often they are adapted to a new context or
set of tasks.58 In this way, programmers both contribute to and benefit
from a cumulative innovation process. While innovation in program de-
sign occasionally rises to the level of invention, most often it does not.
Rather, it is the product of the skilled use of know-how to solve industrial
design tasks.70

Even the conceptual metaphors embodied in software are typically
incremental in character.”? Word processing paper is an extension of
traditional paper; the automated spreadsheet is an extension of the tradi-
tional paper spreadsheet. Both products are innovative, but both also
derive from an existing idea: a manual version. Put more generally,
software development typically involves the automation of known tasks,
which, almost by definition, involves an incremental innovation. Many
extensions of functionality that are built upon a program’s core concep-
tual metaphors (such as cutting and pasting with word processing
software) also involve incremental innovation, applying human factors
engineering to the design task.”

The technical community has recognized the cumulative and incre-
mental nature of software development, and has welcomed efforts to di-
rect the process of software development away from the custom-crafting
that typified its early stages and toward a more methodical, engineering
approach.”® The creation of a software engineering discipline reflects an

68. See, e.g., NRC Report, supra note 4, at 61.

69. See GONTU Report, supra note 17, at 17; Casey P. August & Derek KW. Smith,
Understanding Some Intricacies of Software: Expression, Interfaces, and Reverse
Assembly, Computer Law., Apr. 1994, at 16, 16 (“In practice, patent protection for
program ideas is only available to a very tiny fraction of computer programs, because most
programs contain only widely known ideas which are merely aggregated in an obvious
manner which, in the software developer’s opinion, fits a particular application.”); Duncan
M. Davidson, Protecting Computer Software: A Comprehensive Analysis, 23 Jurimetrics J.’
339, 357 (1983); Randall M. Whitmeyer, Comment, A Plea For Due Processes: Defining
the Proper Scope of Patent Protection for Computer Software, 85 Nw. U. L. Rev. 1103,
1181 (1991) (expressing view that overwhelming majority of software innovations would
not meet Patent Act’s novelty and nonobviousness standards even if subject matter hurdles
could be overcome).

70. See, e.g., Galbi, supra note 6, at 281; Reichman, Applied Know-How, supra note 5,
at 658-59 (discussing skilled efforts to apply know-how in the construction of computer
programs).

71. See generally Curtis, supra note 45, at 71-78 (discussing the human factors
engineering that goes into user interface design).

72. See id. at 61, 73 (discussing engineering analysis that went into choice of now
standard icon for representing documents).

73. See, e.g., Mary Shaw, Prospects for an Engineering Discipline of Software, IEEE
Software, Nov. 1990, at 15, 20. For a general introduction to software engineering, see,
e.g., B. Ratcliff et al., Software Engineering: Principles and Methods (1987); see also Barry
W. Boehm, Software Engineering Economics (1981) (discussing economic reasons for an
engineered approach to software development). There are over one hundred books in the
University of Pittsburgh Library with the term “software engineering” in their titles.

HeinOnline -- 94 Colum. L. Rev. 2331 1994

2332 COLUMBIA LAW REVIEW [Vol. 94:2308

awareness that program development requires skilled effort and applied
know-how comparable to other engineering disciplines.

The products of software engineering almost invariably contain ad-
mixtures of old and new elements. Some consist almost entirely of old
elements. The innovation in such programs may lie in the manner in
which the known elements have been combined in a new and efficient
manner. Or it may come from combining some new elements with well-
known elements in order to achieve the same result in a new way. When
we speak of programs as “industrial compilations of applied know-how,” it
is in recognition of the frequency with which software engineering in-
volves the reuse of known elements.”* Use of skilled efforts to construct
programs brings about cumulative, incremental innovation characteristic
of engineering disciplines. A well-designed program is thus akin to the
work of a talented engineer whose skilled efforts in applying know-how,
accumulated from years of experience and training, yields a successful
design for a bridge or other useful product.

2 The Industrial Compilations of Applied Know-How in Programs
Need Legal Protection that Existing Regimes Cannot Provide

This Section argues that the industrial compilations of applied know-
how embodied in programs are in need of legal protection that existing
regimes cannot provide. We begin in Section 2.1 by discussing some
properties of software that distinguish it from typical industrial products.
Chief among these is that software bears the bulk of the know-how re-
quired to make it on or near the “face” of the product distributed in the
market.”> The know-how borne in software products distributed in the
marketplace makes them vulnerable to rapid, inexpensive copying that
undercuts the initial developer’s opportunity to benefit from the value it
has contributed to the market, thereby undermining its incentives to in-
vest in software development. We refer to this as the vulnerability of
software innovations to trivial acquisition of equivalence.

Section 2.2 will show that existing legal regimes cannot effectively
remedy some market-destructive appropriations of know-how borne in
software because of a mismatch between fundamental principles of each
regime and the loci of value in software. Because know-how borne on or

74. We recognize that the compilation metaphor has some limitations when used to
refer to programs. First, programs can be composed of entirely new elements, although
they rarely are. Second, there will generally be more coherence in the integration of
program components than would be true for the kinds of compilations that copyright law
has historically protected. See generally Jane C. Ginsburg, Creation and Commercial
Value: Copyright Protection of Works of Information, 90 Colum. L. Rev. 1865, 1893
(1990) (discussing copyright protection for compilations of information). However,
integration of useful components is typical of industrial design, whether of programs or of
other industrial products. See Reichman, Design Protection after 1976, supra note 54;
Reichman, Design Protection 1948-1976, supra note 54.

75. See Reichman, Applied Know-How, supra note 5, at 657-61 (discussing computer
programs as bearing know-how on their face).

HeinOnline -- 94 Colum. L. Rev. 2332 1994

1994] MANIFESTO 2333

near the face of publicly distributed software products cannot be kept
secret, trade secret cannot protect it. The predominantly functional na-
ture of program behavior and other industrial design aspects of programs
precludes copyright protection, while the incremental nature of innova-
tion in software largely precludes patent protection.

Software is a valuable artifact whose know-how is largely evident in
distributed products. This know-how is much cheaper to copy than to
create, and is unprotected by current law, which makes innovative
software developers vulnerable to appropriations that undermine their
incentives to invest in software innovation. Section 2.3 shows that at-
tempts to use existing legal regimes to protect the behavior of software
and the industrial design it embodies inevitably lead to cycles of under-
and overprotection that are unhealthy for the industry.

2.1 Program Innovations are Vulnerable to Trivial Acquisitions of
Equivalence that Can Cause Market Distortions

2.1.1 Programs Reveal a Substantial Amount of their Know-How in
Products Distributed in the Market

Know-how can inform any phase of the product development pro-
cess, including design, initial construction (making one), and mass pro-
duction (making many). Know-how can be found in several loci, includ-
ing on the “face” of a product (i.e., evident on simple inspection),
interior to the product (i.e., carried in the product but not immediately
evident), and inside the factory.

Computer programs are an unusual kind of industrial product be-
cause the bulk of the know-how required to create them is accessible on
or near the face of the product distributed in the marketplace. There are
several reasons why this is so: (1) Software products need little specialized
mass-production know-how; (2) they are particularly rich in design know-
how; and (3) they are more susceptible in some respects to reverse engi-
neering than traditional industrial products.

Software is easy to mass-produce because it is an information prod-
uct. There is no steel to cut or bend, no wires to attach, and no parts to
be cast in plastic or rubber. Mass production is as simple as loading cop-
ies onto floppy disks or tapes, a routine, inexpensive, and low-technology
undertaking. Because there are no special processes required for mass
production of the software products, there is no opportunity to accumu-
late specialized know-how about mass production. Lack of mass produc-
tion know-how matters because this is the kind of know-how that can most
easily be kept out of the product, i.e., maintained as a trade secret.”®

76. “There is little difference between the pattern of responses for processes and for
products, except that, as one would expect, reverse engineering is markedly more effective
in yielding information about product technology.” Richard C. Levin et al., Appropriating
the Returns from Industrial Development in 1989 Brookings Papers on Economic Activity
783, 805-06.

HeinOnline -- 94 Colum. L. Rev. 2333 1994

2334 COLUMBIA LAW REVIEW [Vol. 94:2308

Most mass-production know-how of industrial products never leaves the
factory floor. Software, however, has no need for mass production tech-
nology, hence has no mass production know-how to keep secret.

Software is, instead, rich in surface design know-how. This is particu-
larly true for interactive software, i.e., programs that involve a great deal
of hands-on usage.”” For such software, the metaphor or conception of
the task is particularly important. The virtualities that programs create
are crucial to organizing their complex behaviors. They provide what
psychologists call an “affordance,” i.e., the object itself indicates how it
should be used.” The spreadsheet metaphor, the virtual paper in word
processors, and especially the desktop metaphor all illustrate the impor-
tance and value of the design know-how that goes into creating an or-
ganizing metaphor.

Design know-how for software metaphors is especially important be-
cause software allows new conceptions of a task. Unlike physical objects,
the virtual objects created in software are not constrained to obey the laws
of physics.” Only inspiration and insight limit them, not physical or ma-
terial properties. In the desktop metaphor, for example, the electronic
version of file folders can expand, contract, or reorganize their contents
on demand, quite unlike their physical counterparts.

Software is not only especially rich in design know-how; much of the
value of software arises from it. The desktop metaphor, for example, was
crucial to the early success of Apple computers and remains a major fac-
tor today.8? Two of the best-known “look and feel” lawsuits, Lotus Develop-
ment Corp. v. Paperback International, Inc.3! and Apple Computer, Inc. v.
Microsoft Corp.,%2 challenged a competitor’s appropriation of interface de-

77. This includes almost all application software, such as spreadsheets, word
processors, databases, graphics programs, project management programs, finance
programs, and electronic mail systems, as well as many aspects of the operating system, We
are less concerned here with utility programs that support the computer’s infrastructure,
such as memory managers or network utilities, and are not at all concerned with programs
whose most important output is a single result produced by a novel process; for instance,
the solution to a traveling salesman problem produced by the Karmarkar algorithm. See
Andrew N. Parfomak, The The Karmarkar Algorithm—“New” Patentable Subject Matter?,
21 Int’l Rev. Indus. Prop. 31 (1990).

78. The term affordance typically refers to the appearance of a physical object, but it
may also refer to icons on a computer screen or the underlying metaphor in a system. See
Curtis, supra note 45, at 60-61.

79. See supra note 47.

80. Charles H. Ferguson & Charles R. Morris, Computer Wars: How the West Can
Win in a Post-IBM World 106 (1993). The desktop metaphor radically changed the user’s
experience in using a computer, from typing obscure commands, to manipulating familiar
objects. The change opened up the power of computers to many people for whom
learning to use them would have been intimidating.

81. 740 F. Supp. 37 (D. Mass. 1990).

82. 799 F. Supp. 1006 (N.D. Cal. 1992), affd 35 F.3d 1435 (9th Cir. 1994).

HeinOnline -- 94 Colum. L. Rev. 2334 1994

1994] MANIFESTO 2335

sign, not elements of program text. There is also a good deal of commer-
cial interest in designing software to be usable.82

The difficult task in creating interactive software, the innovations
embodied in it, and the value of those innovations are typically found in
conception and design: determining how to think about the task (e.g.,
the desktop metaphor), and then determining what capabilities the pro-
gram should have (e.g., what can be done with documents, or folders).
Determining the answers to these questions requires both informed in-
sight and the time-consuming and expensive process of having real users
test the software for extended periods.®% We can summarize by saying
that interactive software is, by its nature, rich in design know-how.

Such know-how is, inescapably, present on the face of the product,
and immediately evident on inspection. The hard-won insights and inno-
vations embodied in surface design are prominently displayed by the pro-
gram in operation; they are also explained in online help, and further
detailed in the manual. Insights not readily explained by the tool or the
manual will often become evident to a sophisticated user of the program
who runs the program over a variety of examples. Since program innova-
tion often lies in finding a way to make program behavior easier for peo-
ple to use, the behavior and its insights must be evident to the user.85 As
one example, Paperback needed nothing more than the ability to run
Lotus 1-2-3 and observe its behavior in order to clone it. And in one of
the now-legendary events of the computer industry, Steve Jobs visited
Xerox’s Palo Alto Research Center in 1979 for a tour that included a
demonstration of Xerox’s Alto computer and its graphical user interface.
Many of the ideas he saw there later appeared in the Apple Lisa and
Macintosh computers.8¢ Hence we say that programs bear a con51derable
amount of know-how on the face of the product.8

Although much of the know-how embodied in programs is borne on
the face of software products, other know-how resides in the details of its
internal construction, such as in its algorithms, data structures, and con-

83. See Curtis, supra note 45, at 59; Scott Leibs, Why Can’t PCs Be More Fun,
Information Week, Aug. 15, 1994, at 27 (“[I]nterface design is hot. What would a truly
easy—and more productive—interface look like?").

84. See NRC Report, supra note 4, at 56 (“ ‘The original version of [Lotus] 1-2-3 and
its interface required a great deal of hard work—hundreds of hours, multiple iterations,’
explained [Mitchell] Kapor, co-developer of the . . . program. ‘It was very non-obvious, and
it was tested on users.’ ”); see also Werner L. Frank, Critical Issues in Software 22 (1983)
(estimating that only about 20% of software development work is attributable to writing
code). The proportion of software development attributable to design, coding, testing,
and maintenance may, however, vary substantially from program to program.

85. See, e.g., Alfred V. Aho et al., Data Structures and Algorithms (1983); Richard E.
Fairley, Software Engineering Concepts (1985).

86. The head of the Xerox Lab subsequently recalled: “To allow Jobs to see the power
of the [Alto] system . . . was a dumb thing to do Once he saw it, the damage was done;
he just had to know that it was doable.” Douglas K. Smith & Robert C. Alexander,
Fumbling the Future 241-42 (1988).

87. See Reichman, Applied Know-How, supra note 5, at 659-60.

HeinOnline -- 94 Colum. L. Rev. 2335 1994

2336 COLUMBIA LAW REVIEW [Vol. 94:2308

trol structures.®® The innovation in program internals often lies in con-
structing new ways to organize and structure these information compo-
nents. Program internals are an important part of the value in software
because they contribute to innovative and efficient (and consequently,
valuable) behavior.

One way to gain access to the internal design of a program is to get a
license from its developer. A more difficult, but nonetheless workable,
way to gain access to program internals is to decompile it.3° The object
code in software packages can, through a decompilation process, be
translated into a form that approximates to some degree the source code
that the program’s developer maintains as a trade secret. While decom-
piled code is difficult to read, it is far easier to understand than object
code.®® It is not uncommon for software developers to decompile other
firms’ programs when they need access to specific crucial pieces of know-
how embodied in the object code.®! A

Software developers do not use decompilation more frequently be-
cause in the current state of the art, decompilation is a painstaking and
time-consuming process. Thus, although internal know-how is accessible
from an examination of the software as distributed in the marketplace, it
is today discernible only by the difficult process of decompilation.
Hence, we speak of the internal know-how of software as lying “near the
surface” of the product. As the technology for the reverse engineering of

88. See supra note 37 for a definition of algorithms and data structures. Control
structures are “the facilities of a programming language that specify a departure from the
normal sequential execution of statements.” Websters’ New World Dictionary of
Computer Terms, supra note 37. See generally Davis, Nature of Software, supra note 5, at
317-25 (explaining and giving concrete examples of various kinds of program elements,
including control structures).

89. The standard process of translating from source code to object code is referred to
as compiling; hence the inverse process is known as decompiling. For programs that are
distributed in assembly form, disassembly is a similar reverse analysis process. See Finding
a Balance, supra note 2, at 7, 147-50 (nontechnical description of decompilation and
disassembly).

90. Decompiled code is not as useful as source code. Decompiling cannot, for
example, restore the mnemonic names for variables and procedures chosen by the
programmer. Programmers select those names to help them keep track of their own code,
by making clear in the name what each piece of code is doing. Hence they greatly assist
anyone else who wishes to understand the code. But those names are lost in the
translation from source to object code and cannot be recreated during reverse analysis.

91. The videogame developer, Atari Games, once decompiled a small program
embedded in Nintendo videogame consoles. It did so to develop a program for its games
that would send the precise “message” needed for them to operate in the Nintendo
console. By this decompilation, Atari gained access to crucial internal know-how in the
Nintendo code, know-how that had previously prevented unlicensed game cartridges from
running on Nintendo consoles. After Atari used this knowledge to construct and sell
videogame cartridges that would operate in Nintendo consoles, Nintendo sued, alleging
copyright infringement. See Atari Games Corp. v. Nintendo of America, Inc., 975 F.2d
832, 843-45 (Fed. Cir. 1992) (holding that decompilation did not infringe copyright, but
affirming grant of preliminary injunction because of similarities in programs arising from
Atari’s efforts to achieve more than present compatibility with Nintendo systems).

HeinOnline -- 94 Colum. L. Rev. 2336 1994

1994] MANIFESTO 2337

programs improves, the internal know-how of programs may come to lie
ever nearer the surface of the product.

2.1.2 Software Products Are Vulnerable to Trivial Acquisitions of
Behavioral Equivalence

Because software bears the bulk of its know-how on or near the sur-
face of the product, and because it is an information product, it is more
vulnerable than traditional industrial products have generally been to
trivial acquisition of behavioral equivalence.%2 By trivial acquisition, we
mean that producing an imitation requires only modest effort, time, and
cost by comparison to the resources required to develop the product ini-
tially. By behavioral equivalence, we mean that a second comer can pro-
duce a program that is indistinguishable to users, and hence, can be a
market substitute for the first.93

There are a number of ways by which second comers can acquire
behavioral equivalence with a particular program.®* The most trivial way
to acquire it is by literal duplication of the program’s source or object
code.®> The next most trivial means of acquiring behavioral equivalence
is by working from the other programmer’s flowchart.9® A somewhat

92. Any product with know-how on its face suffers to some extent from the problem of
nonexcludability: the revealed know-how becomes a public good, i.e., 2 valuable entity
whose benefit is freely available to all. Producers of public goods may be unable to capture
a sufficient share of the benefit from such goods to justify the investment necessary to
create them, leading to underproduction. See Menell, supra note 1, at 1059 (discussing
public goods and concomitant market failure). One traditional economic justification for
intellectual property rights is the goal of avoiding this market failure. It has been
recognized for some time that innovations of the sort found in software are classic
examples of public goods. See id. We suggest that software innovation has a particularly
compelling public-goods problem and may need legal protection because most of its
valuable know-how is on the face.

Legal protection is, however, neither guaranteed to solve the problem, nor is it the
only possible solution. Other factors, notably lead time, can help considerably. See id. at
1060. Software, however, has little natural lead time.

93. See supra note 28 for factors that may make clone products less than perfect
market substitutes.

94, Trivial acquisitions of equivalence can occur with other electronic information
products as well. In the case of databases, for example, acquisition of equivalence can also
be accomplished by exhaustive inquiry. The process can be made trivial by automating it:
directing one program to send an exhaustive set of inquiries and then building its own
database from the replies.

95. Copyright law addresses this kind of market-destructive copying. See, e.g., Apple
Computer, Inc. v. Formula Int’l, Inc., 725 F.2d 521 (9th Cir. 1984).

96. This method does not involve access to the first program or copying of the
graphical elements of the flowchart. The industrial design of the program’s functional
components depicted in the flowchart would no more be protected by copyright law than
the industrial design of a bridge would be protected by the copyright in an engineering
drawing of it. See, e.g., Kern River Gas Transmission Co. v. Coastal Corp., 899 F.2d 1458
(5th Cir.), (route for natural gas pipeline not protectable by copyright law), cert. denied,
111 S.Ct. 374 (1990); Fulmer v. United States, 103 F. Supp. 1021 (Ct. Cl. 1952) (parachute
design not protected by copyright in drawing); Muller v. Triborough Bridge Auth., 43 F.

HeinOnline -- 94 Colum. L. Rev. 2337 1994

2338 COLUMBIA LAW REVIEW [Vol. 94:2308

more demanding means of acquiring behavioral equivalence is by care-
fully studying a program’s behavior by running the object code with a
variety of inputs, then reproducing that behavior with newly written
source code. Even so, this effort is generally trivial by comparison with
the original developer’s costs. The most arduous way to acquire behav-
ioral equivalence with another program is by decompilation. This
method is presently practical only for very modest amounts of code.®”

Any product that bears a large quantum of its know-how on its face is
vulnerable to rapid imitative copying because this know-how cannot be
kept secret. Creating, testing, and revising the menu tree of Lotus 1-2-3,
the desktop metaphor of the Xerox Alto, and the properties of the virtual
paper in the first word processors all required extensive time, effort, and
expense. Yet once designed, they were trivially recreated by second com-
ers, vastly reducing lead time.%8

Because software is an information product, it is vulnerable to trivial
acquisition of production and distribution equivalence. As we have
noted, the mass production of software is technologically trivial and es-
sentially error free. Accordingly, a second comer faces no significant de-
lays to accumulate product stock, no capital cost or delay to build or
retool factories or to develop mass production processes, and no issues of
production quality (error rates in conventional methods of duplicating
disks and tapes are very low). The recent appearance of network distribu-
tion suggests that product distribution may become almost free and in-
stantaneous as well.%°

Loss of lead time is of particular concern in industries that sell infor-
mation artifacts, such as software, because there are virtually no manufac-
turing costs associated with information artifacts in electronic form. In-
formation is what the product has to offer, and it is there for the taking.
By comparison, in industries producing physical products, some natural
lead time generally exists by virtue of the need to obtain the necessary
raw materials, retool one’s manufacturing facility to produce a new or

Supp. 298 (S.D.N.Y. 1942) (design for traffic approach to bridge not protectable by
copyright in drawing). See infra notes 179-181 and accompanying text for a discussion
showing that this principle of United States copyright law was intended to apply to the
functional design for programs depicted in flowcharts.

97. See supra notes 89-91 and accompanying text.

98. See NRC Report, supra note 4, at 2. See also Levin et al., supra note 76, at 809
(indjcating that 84% of industry managers surveyed believed they could replicate a typical
unpatented new product for less than three-quarters of innovator's research and
development cost, while 53% believed they could do it for less than half of innovator’s
cost).

99. Software has recently begun to be delivered via networks (such as via Internet). If
network distribution becomes more common, it will eliminate the time and expense of
copying, packaging, and distributing disks. This kind of information product could thus
(after the first artifact has been created) be manufactured, reproduced, and distributed at
virtually zero marginal cost.

HeinOnline -- 94 Colum. L. Rev. 2338 1994

1994] MANIFESTO 2339

revised product, and distribute the manufactured items.1°© Manufactur-
ers of standard industrial products also tend to have lead time by virtue of
the trade secrets that can successfully be kept in the plant because the
product does not reveal crucial know-how on or near its surface.

2.1.3 Trivial Acquisition of Equivalence Can Cause Market Failure

We stress the triviality of some acquisitions of behavioral equivalence
because this triviality can be the source of market-destructive effects.10!
The particular means a firm uses to acquire behavioral equivalence is not
important from a market-preservation standpoint. The crucial concern is
whether it is trivially easy and quick to copy a software innovation that was
very expensive to develop. If the disproportion in cost of copying and
cost of innovation is substantial enough, it can destroy the innovator’s
opportunity to recoup its expenses, and consequently, can destroy incen-
tives to invest in software innovation.102

Professor Gordon has noted that market failure of the sort under
discussion requires the confluence of several distinct conditions:103

100. Of course, natural lead time can sometimes be quite brief for industrial products
as well. This is the principal reason that some countries have adopted utility model and
industrial design laws to give artificial lead time to incremental innovation in industrial
* products. See J.H. Reichman, Legal Hybrids Between the Patent and Copyright
Paradigms, 94 Colum. L. Rev. 2432, 2455-62 (1994) [hereinafter Reichman, Legal
Hybrids].

101. Copying that is trivially easy and rapidly accomplished will not create market
distortions if the costs of the initial development are about the same as the cost of copying
or if there are obstacles that prevent one who has engaged in rapid and easy copying from
reaping substantial rewards from this practice (e.g., if the consuming public did not trusta
clone product). Market destructive effects will occur when the costs of initial development
are high, the costs of copying are very low, and the copyist can undercut the innovator’s
price and obtain substantial profits by taking a free ride on the innovator’s efforts. In such
a situation, firms may underinvest in innovation. See, e.g., Wendy J. Gordon, Assymetric
Market Failure and Prisoner’s Dilemma in Intellectual Property, 17 U. Dayton L. Rev. 853,
861-67 (1992) [hereinafter Gordon, Market Failure]; see also Wendy J. Gordon, On
Owning Information: Intellectual Property and the Restitutionary Impulse, 78 Va. L. Rev.
149, 222-58 (1992) (discussing a proposed tort of “malcompetitive copying”).

102. See, e.g., Dreyfuss, supra note 6, at 901-02 (contrasting the lead time generally
available to developers of traditional products with that available to developers of
information products). Underinvestment in software innovation will, in turn, lead to
underproduction of follow-on generations of goods and services that would have been
produced if the initial goods had been available in the market. See, e.g., Gordon, Market
Failure, supra note 101, at 854.

103. Gordon, Market Failure, supra note 101, at 863-65. Professor Gordon has
employed a variant on the “prisoner’s dilemma” problem from decision theory to show
that the grant of an intellectual property right can sometimes avoid this kind of market
failure. In the standard prisoner’s dilemma model, two persons charged with a crime face
a dilemma: whether to decline or accept an offer of a lighter sentence in exchange for
testimony against a fellow suspect. If both stay silent, each will receive a sentence of, say, 18
months; if both accept the offer, both will be sentenced to, say, five years in prison,; if only
one accepts the offer, that person will go free and the other will do a maximum prison
term of, say, nine years. Although both would be better off if both declined the

HeinOnline -- 94 Colum. L. Rev. 2339 1994

2340 COLUMBIA LAW REVIEW [Vol. 94:2308

the costs of creating an innovative product are high;

the costs of copying are very low;

the products offered by the copyist are equivalent to those
offered by the innovator;104

consumers know the two products are equivalent;

. the investment in innovation would be more than paid off if
no copying occurs;

the investment will be lost if copying occurs because the cop-
ier is able to save so much by copying that he can charge a
lower price than the innovator.10%

U oot

e

Gordon posits two potential innovators, considering an investment
in innovation, but uncertain of whether the other will innovate or imi-
tate. In such a situation, she says, the optimal outcome, both for the par-
ties and for society, is for both to choose to invest in development of an
innovative product.1°¢ However, when both fear the other will yield to
the temptation to copy, both are likely to opt not to innovate.1°” A legal
proscription against copying can prevent these actors from engaging in
mutually destructive conduct (not 1nnovat1ng) and would cure the mar-
ket failure that unconstrained copying would cause.108

These conditions can often be met in the software market. As we
have observed, the costs of software development are high; the costs of
copying can be extremely to somewhat trivial; copying can produce an
equivalent product that will be recognized as such by consumers; invest-
ments can be recouped if copying is restrained; and firms that sell clones
of software products can sell lower-priced products because of the dispar-
ity between the costs of the innovator’s development and the costs of
copying. The innovator’s investment can be lost if consumers succumb to
the temptation to buy the lower-priced product.

Focusing on trivial acquisition of functional equivalence directs dis-
cussion to issues of importance to software developers—the source of
value in software (know-how pertaining to behavior and the design that
brings it about) and the results of copying (achieving behavioral equiva-
lence)—rather than to issues dictated by traditional legal regimes, such
as the medium of creation (program code vs. a hardware equivalent), or
to concepts such as idea and expression, whose distinction is extremely

prosecution’s offer, the common outcome of this dilemma is that both accept the offer and
do more time than if both had declined. See id. at 861. The payoff structure of these
choices can, however, be adapted to other contexts. In intellectual property terms, the
cooperative strategy is to be creative, and the defection strategy is to copy. See id. at 863.

104. Equivalence may also be needed with respect to factors affecting consumer
satisfaction (e.g., service, reliability, maintenance, upgrades, number of distribution
outlets, etc.).

105. Gordon, Market Failure, supra note 101, at 863.

106. See id. at 864.

107. See id.

108. See id. at 864-65.

HeinOnline -- 94 Colum. L. Rev. 2340 1994

1994] MANIFESTO 2341

difficult to make clear and operational in relation to software.1%° In addi-
tion, it directs discussion to the nature of the results to be avoided (trivial
acquisition of behavioral equivalence) rather than to any particular doc-
trinally significant means by which to achieve behavioral equivalence
(such as decompilation).110

2.1.4 Trivial Acquisition of Behavioral Equivalence Is a Technology-
Independent Concept

Focusing on trivial acquisition of behavioral equivalence offers a de-
gree of independence from current technology. This is important for
two reasons: first, in the future, new ways may be found to acquire behav-
ioral equivalence with another program;!!! second, the market-destruc-
tive potential of some existing techniques for achieving equivalence may
be altered by the evolution of technology. The latter point can be illus-
trated by considering the current and potential future practice of
decompilation.

Reverse engineering of the contents of a program by decompilation
or disassembly is currently a largely manual and very tedious process in-
volving considerable effort to learn anything of value about a program of
more than modest size.112 Given today’s technology, programmers gen-
erally cannot hope to use decompilation as a means to achieve behavioral
equivalence with only trivial effort. Because of this, under a trivial acqui-
sition test, current industry “clean-room” reverse-engineering processes
would be lawful ways to acquire behavioral equivalence.!13

But as automated tools for reverse engineering improve,!'* as they
are expected to do,11® the day may come when reverse-engineering tech-

109. See infra notes 197-209 and accompanying text for a discussion of the
difficulties courts have encountered in applying the idea/expression distinction to
software.

110. See infra notes 325-337 and accompanying text for a discussion of the doctrinal
controversy about decompilation and the extent to which the doctrinal discussion
obscures, rather than clarifies, the true significance of decompilation.

111. See, e.g., Brooks, supra note 36, at 15-16 (discussing the prospects for automatic
and graphical programming).

112. See, e.g., Finding A Balance, supra note 2, at 147-48.

" 113. See supra note 24.

114. We emphasize here the potential impact of improvements in reverse-engineering
technology because they could make program internals more transparent and hence easier
to appropriate. However, any technique that improves the efficiency of constructing
software can affect the ease and rapidity with which software innovations can be
appropriated.

115. See NRC Report, supra note 4, at 11, 78. It is surely true that reverse-engineering
technology will improve. See generally Jim Q. Ning et al.,, Automated Support for Legacy
Code Understanding, Comm. ACM, May 1994, at 50 (discussing program segmentation as
advanced form of reverse engineering). The larger and more complex the program, the
greater will be the level of difficulty for a copyist to find any particular capability in the
object code and decompile it. Furthermore, increased use of more powerful optimizing
compilers may make decompilation more difficult over time rather than less. Optimizing

HeinOnline -- 94 Colum. L. Rev. 2341 1994

2342 COLUMBIA LAW REVIEW [Vol. 94:2308

nologies would permit a firm to create a functional equivalent of a pro-
gram with only trivial investments of time, effort, and expense. In that
case, use of these techniques on someone else’s software without permis-
sion might need to be regulated. Those who have tried to persuade
courts and policymakers to outlaw decompilation!1® may realize that a
future in which decompilation can be done with trivial effort may not be
so comfortably far off as to be mere conjecture.

2.2 Existing Legal Regimes Cannot Appropriately Protect Industrial
Design Elements of Programs

This subsection will show that existing legal regimes are structurally
unsuited to providing an appropriate degree of protection to compiled
know-how lying on or near the face of software products. Trade secrecy
law cannot protect know-how borne in products found in the market-
place. Because programs are both literary works and machines, both
copyright and patent law have had difficulties dealing with them.!!” In
addition, the independence of program text and behavior make text-ori-
ented solutions to protecting behavior unworkable.

2.2.1 Trade Secrecy Law Cannot Protect Know-How Discernible in
Publicly Distributed Products

The mismatch between existing legal regimes and the know-how em-
bodied in software is most evident with respect to trade secrecy law.
Although trade secrecy law has a long history of protecting industrial
compilations of applied know-how,18 it cannot protect behavior or other

compilers are high-performance compilers capable of producing object code that executes
especially quickly. This execution speed is, however, typically bought at the cost of making
the object code considerably more difficult to reverse analyze, even for the author of the
source code. Hence, a second comer intent on decompiling the object code may find that
the size of the program and the complexities introduced by a high performance compiler
will more than offset the added power of more advanced reverse-engineering tools. The
balance of power in these two technologies will bear watching as it evolves. Our thanks to
Professor Lee Hollaar for sharing his thoughts on this issue.

116. See infra note 329 and accompanying text.

117. See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir.
1992) (referring to “hybrid nature” of computer programs and indicating that utilitarian
nature of programs made it difficult to apply idea/expression distinction); OTA Report,
supra note 6, at 78-80. Regarding patent law difficulties with programs, see infra notes
131-140 and accompanying text. Theodor Nelson coined the term “literary machines” in a
book about a hypertext publishing system. See Theodor H. Nelson, Literary Machines
(5th ed. 1983). We think the term has a more general application to software.

118. See Restatement of Torts § 757 cmt. b (1939) (defining subject matter of trade
secrecy law as including compilations of information used in industry to give firm a
competitive advantage over those who do not possess them). For a recent case in which
compiled know-how was treated as a trade secret, see Rockwell Graphic Sys., Inc. v. DEV
Indus., 925 F.2d 174, 176-77 (7th Cir. 1991) (treating compiled know-how about materials,
dimensions, tolerances, and methods of manufacture as trade secrets). For in-depth
coverage of American trade secrecy law, see Roger M. Milgrim, Milgrim on Trade Secrets

HeinOnline -- 94 Colum. L. Rev. 2342 1994

1994] MANIFESTO 2343

know-how borne on the face of a mass-marketed software product be-
cause such know-how cannot be kept a secret. An experienced program-
mer who runs a program to study its component behaviors can often
learn everything necessary to make a functionally indistinguishable
program.

Nor can trade secrecy law protect know-how borne near the surface
of software products, because trade secrecy law has long regarded reverse
engineering of products available in the marketplace as a fair means of
acquiring trade secrets.!l® Thus, a competitor can buy an industrial
product in the marketplace, disassemble it to discern how and of what the
product is made, and make a similar product. As applied to software, this
policy would suggest that reverse analysis of program code by decompila-
tion or disassembly would be a fair means of obtaining the compiled
know-how borne near the surface of software products.120

2.2.2 Why Patent Law Is Ill-Suited to Protecting Software Innovation

The dual character of computer programs—which are both writings
and machines at the same time-—has presented some difficulties for
those wanting to use patent law as a means of legal protection for
software innovations. Patent law has traditionally excluded texts
(“printed matter”), as well as methods embodied in texts, from its do-

(1994). For economic analyses of trade secrecy law, see David D. Friedman et al., Some
Economics of Trade Secret Law, 4 J. Econ. Persp., Winter 1991, at 61; Edmund W. Kitch,
The Law and Economics of Rights in Valuable Information, 9 J. Legal Stud. 683, 708-23
(1980).

Although secret know-how has received legal protection for centuries, the law of trade
secrecy, as such, is of more recent origin. Until the mid-1800s, the tort doctrine on
breaches of confidential relationships and the law of contracts were the legal doctrines
employed to protect commercially valuable secrets. The case that seems to have given rise
to a separate law of trade secrecy was Morison v. Moat, 9 Hare 241, 68 Eng. Rep. 492 (V.C.
1851) (enjoining defendant from selling version of unpatented medicine because of
wrongful manner of acquisition from originator). The misappropriator of commercially
valuable information in that case had neither a contractual nor a confidential relationship
to the plaintiff, yet was clearly on notice that the plaintiff had kept certain information
secret in order to protect its commercial advantage in the marketplace. See id. at 495-98.
Although the idea of trade secrecy law caught on in the United States, there are some
countries that still do not have a separate law of trade secrecy. See Finding a Balance,
supra note 2, at 88.

119. See, e.g., Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974) (construing
Ohio statutes and Restatement of Torts § 757). If the defendant takes the market-
destructive approach of appropriating the information from material given to it in
confidence by the plaintiff, rather than actually doing the reverse engineering, courts
sometimes find trade secret misappropriation. See, e.g., Smith v. Dravo Corp., 203 F.2d
369, 374-75 (7th Cir. 1953) (holding argument of wrongful acquisition not estopped by
possibility of legal acquisition).

120. See infra note 329 and accompanying text for a discussion of the efforts some
have made to prohibit decompilation, as a matter of copyright law, so that the contents of
program texts can be protected as trade secrets.

HeinOnline -- 94 Colum. L. Rev. 2343 1994

2344 COLUMBIA LAW REVIEW [Vol. 94:2308

main.’?! Under this doctrine, program code is unpatentable even
though, once in machine readable form, it is unquestionably a technolog-
ical process.!22

Under the “printed matter” rule and the kindred “mental process”
doctrine,'23 more abstract elements of programs should also be unpatent-
able.12¢ Perhaps out of deference to their traditionally separate domains,
patent law has generally left innovations in the representation, ordering,
and presentation of information to copyright.1?> The Patent and Trade-
mark Office and the courts have historically explained that such innova-
tions lacked an industrial character.126

In reliance on these doctrines, the Patent Office for nearly two de-
cades, refused patent applications for software innovations on subject

121. See, e.g., In re Rice, 132 F.2d 140, 141 (C.C.P.A. 1942) (holding that a pictorial
method of writing music was not patentable subject matter under the “printed matter”
rule); In re Russell, 48 F.2d 668, 669 (C.C.P.A. 1931) (holding method of arranging
directories in phonetic order unpatentable). See generally Note, The Patentability of
Printed Matter: Critique and Proposal, 18 Geo. Wash. L. Rev. 475 (1950) (exploring case
law development of “printed matter” doctrine). The Patent and Trademark Office
currently relies on the “printed matter” rule as its basis for excluding programs from the
subject matter of patent law. See, e.g., United States Patent and Trademark Office &
United States Copyright Office, Patent-Copyright Laws Overlap Study 46 (1991)
[hereinafter Overlap Study].

122. It is because programs in machine-readable form are utilitarian processes that
Professor Chisum has argued that program instructions should be regarded as patentable
subject matter. See 1 Donald S. Chisum, Patents § 1.02[4] (1994).

123. A number of appellate courts have ruled that information processes are
unpatentable. See, e.g., In re Abrams, 188 F.2d 165, 168 (C.C.P.A. 1951) (holding that
method involving “calculating,” “measuring,” “observing,” and “comparing” of data
elements was unpatentable). The Patent Office has regarded information processes to be
unpatentable even if an applicant claims more than a mental implementation of them
(e.g., use of some technology, such as pen or calculator, to carry them out). See
Samuelson, Benson Revisited, supra note 5, at 1043—-44. The United States Supreme Court
has stated that “mental processes” are unpatentable subject matter. See Gottschalk v.
Benson, 409 U.S. 63, 67 (1972); see also In re Meyer, 688 F.2d 789, 795-96 (C.C.P.A. 1982)
(rejecting claims for programmable medical diagnosis system as merely simulating thought
processes of doctors). The name generally given to the doctrine established in this line of
cases is the “mental step” or “mental process” doctrine. See 1 Chisum, supra note 122,
§ 1.03[6].

124. Mathematical principles, like laws of nature and other scientific principles, have
also been regarded as unpatentable in character. See, e.g., Gottschalk, 409 U.S. at 71-72
(program algorithm held unpatentable mathematical principle).

125. See generally Ginsburg, supra note 74 (tracing development of copyright
protection for selection, arrangement, and manner of presentation of information).

126. Both relied on Cochrane v. Deener, 94 U.S. 780 (1877), as having established
that patentable “processes” were those that involved the transformation of matter from one
physical state to another. See Gottschalk, 409 U.S. at 69-70; see also Samuelson, Benson
Revisited, supra note 5, at 1033-40, 1056-57 (discussing cases and reasons for this
interpretation of process). For a discussion of some processes that have long been thought
to be ineligible for patent protection, see 1 Chisum, supra note 122, § 1.03. But see
Chisum, Algorithms, supra note 1, at 1020 (arguing that program algorithms should be
patented).

HeinOnline -- 94 Colum. L. Rev. 2344 1994

1994] MANIFESTO 2345

matter grounds.!??” The U.S. Supreme Court seemed to concur in this
legal position, and its decisions influenced the patent policies of other
nations.!?® Since the mid-1980s,129 however, patent protection has be-
come available for a wide range of software innovations, seemingly be-
cause of the perceived need for more legal protection of programs than
copyright alone could provide.!30

Apart from subject matter concerns, one reason that patents have
limited application in the protection of behavior is that patents typically
issue for particular methods of achieving results, rather than for results
themselves.?3! It is quite possible to produce functionally indistinguish-
able program behaviors through use of more than one method.!32 This
means that holding a patent on one method of generating certain results
could not prevent the use of another method, even if those results were
the program’s principal source of value.13® Hence, patents on methods
would not protect behavior and therefore would not protect the primary
entity of value in software. Yet if the Patent and Trademark Office were
willing to issue a patent with claims for any means of achieving a particu-
lar set of results, such a patent would issue at a high level of generality
and would inhibit competition in development of useful program behav-
iors out of proportion to the innovation actually contributed by the
claimant.134

127. The Court of Customs and Patent Appeals overturned some of these subject
matter rulings. See Samuelson, Benson Revisited, supra note 5, at 1041-48.

128. See Diamond v. Diehr, 450 U.S. 175, 185-87 (1981) (holding rubber curing
process that included computer program patentable, but reaffirming Benson and Flook on
unpatentability of algorithms); Parker v. Flook, 437 U.S. 584 (1978) (holding algorithm
unpatentable, even though industrial application specified); Gottschalk, 409 U.S. at 63
(holding algorithm unpatentable). For international influences, see Henri Hanneman,
The Patentability of Computer Software 243 (1985) (discussing impact on European
patent policy for software innovations); see also Samuelson, Bensor Revisited, supra note 5,
at 1132-33 & n.426 (discussing standards for patenting software-related innovations in
Europe).

129. See Samuelson, Benson Revisited, supra note 5, at 1093-94.

130. See Barton, supra note 6, at 265 (suggesting this rationale for the revised patent
policy).

131. See, e.g., U.S. Patent No. 4,821,211 to Torres, issued Apr. 11, 1989 (Method of
Navigating Among Program Menus Using a Graphical Menu Tree); U.S. Patent No. 4, 796,
220 to Wolfe, issued Jan. 3, 1989 (Method of Controlling the Copying of Software).

132. See, e.g., 3 Knuth, supra note 64 (volume describing various ways to accomplish
sorting and searching).

133. Some holders of software-related patents have, however, tried to claim all means
of achieving particular results. See, e.g., Brian Kahin, The Software Patent Crisis, Tech.
Rev., Apr. 1990, at 53, 58 (giving examples of overbroad patents for performing certain
functions by computer).

134. See, e.g., U.S. Patent No. 5,317,757 to Medicke & Posharow, issued May 31, 1994
(System and Method for Finite State Machine Processing Using Action Vectors); U.S.
Patent No. 5,105,184 to Pirani & Ekedal, issued Apr. 14, 1992 (Methods for Displaying and
Integrating Commercial Advertisements with Computer Software).

Other factors thought by some to impede the utility of patents in the software industry
include the high costs and long delays required to obtain such protection for program

HeinOnline -- 94 Colum. L. Rev. 2345 1994

2346 COLUMBIA LAW REVIEW [Vol. 94:2308

However, the more profound problem with using patent law to pro-
tect functional program behavior, user interfaces, and the industrial de-
sign of programs that produce behavior is that these innovations are typi-
cally of an incremental sort.13% Classical intellectual property regimes do
not protect this kind of innovation.13¢ Patent law requires an inventive
advance over the prior art before it grants protection.!3? Protecting in-
cremental innovations in program behavior through patent law would
thwart the economic goals of the patent system: to grant exclusive rights
only when an innovator has made a substantial contribution to the art
and advanced competition to a new level.138

In this respect, software resembles semiconductor chips whose indus-
trial designs are rarely inventive. Congress recognized that the chip in-
dustry’s products were both patentable and vulnerable to rapid imitative
copying that undermined innovators’ ability to recoup research and de-
velopment costs; this undermined incentives to make the substantial in-
vestments necessary to develop new chip designs.!3® To provide proper
incentives for semiconductor designs, Congress passed the Semiconduc-
tor Chip Protection Act of 1984 (SCPA).140 It may eventually need to do
the same for computer software, where the typically incremental nature
of innovation also impedes the utility of patent protection.

In addition, the application of both copyright and patent law to
software innovations may impair the effectiveness of both forms of protec-
tion. It has also created considerable uncertainty about the scope of pro-

innovations. See, e.g., Garfinkel et al., supra note 5, at 52; Kahin, supra note 133, at 55. As
a practical matter, these barriers might make patent protection unavailable to small
software developers with limited resources. Software developers generally need legal
protection most in the first few years after they introduce an innovation to the market, a
need which patents cannot meet. United States patent law provides no protection to an
invention (except if it can be kept as a trade secret) until the patent actually issues. This
rule makes many software innovations vulnerable to appropriation in the first years after
they are introduced into the market. If and when a patent finally issues, it may also come
after the useful commercial life of the product embodying the innovation, because of the
fast pace of innovation in the industry. A form of legal protection for the first years of a
technical innovation in software would, accordingly, be better tailored to the needs of
software entrepreneurs. See infra text accompanying notes 411, 414.

185. See supra notes 67-74 and accompanying text.

136. Trade secrecy law protects incremental innovations that can be kept a secret.
See Reichman, Legal Hybrids, supra note 100 (concerning legal hybrid regimes, created to
protect some publicly disclosed incremental innovations).

137. See 35 U.S.C. § 101 (1988).

138. See U.S. Const. art. I, § 8, cl. 8; Michael Lehmann, The Theory of Property
Rights and the Protection of Intellectual and Industrial Property, 16 1.1.C. (1985).

139. See H.R. Rep. No. 781, 98th Cong., 2d Sess. 1-40, (1984), reprinted in
U.S.C.C.AN. 5750, 5750-60.

140. 17 U.S.C. §§ 901-914 (1988). SCPA is discussed further infra notes 379-381,
417-428 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2346 1994

1994] MANIFESTO 2347

tection available from each.!¥! No one knows just where the boundary
line between these domains does or should lie.}42 The economic goals of
both regimes can be thwarted when both are applied to a dual-character
subject matter such as computer programs.’4® This is especially true if
copyright law, with its long duration of protection, its low creativity
threshold, and its automatic protection, is construed so broadly that it
encompasses technical innovations that should be regulated by patent
law.144

2.2.3 Why Copyright Law Is Ill-Suited to Protecting Software
Innovations

The dual nature of programs has also created conceptual difficulties
for copyright law.145 For a time, copyright officials were unsure that com-
puter programs in machine-readable form were copyrightable subject

141. See Pamela Samuelson, Survey on the Patent/Copyright Interface for Computer
Programs, 17 AIPLA QJ. 256, 259-61 (1989) (showing differences of opinion among
computer lawyers).

142. Is a program’s data structure copyrightable, patentable, both, or neither? For
discussion of this issue under each law without regard to the other, see Whelan Assocs. v.
Jaslow Dental Lab., Inc., 797 F.2d 1222 (3d Cir. 1986) (seeming to regard data structures as
copyrightable), cert. denied, 479 U.S. 1031 (1987); In re Bradley, 600 F.2d 807 (C.C.P.A.
1979) (data structure for microcode function held patentable), aff’d sub nom. Diamond v.
Bradley, 450 U.S. 381 (1981) (equally divided court); see also In re Lowry, 32 F.3d 1579
(Fed. Cir. 1994) (holding data structure patentable subject matter); In re Warmerdam, 3
U.S.P.Q.2d (BNA) 1754 (Fed. Cir. 1994) (holding data structure unpatentable, although
claim for machine implementation of data structure was patentable).

143, See Reichman, Legal Hybrids, supra note 100, at 2451-52 (discussing the
economic goals of the classical intellectual property regimes).

144. See OTA Report, supra note 6, at 83. This problem is especially serious in light
of the interchangeability of software and hardware. See supra note 27 and accompanying
text. At the moment it is generally not feasible to transform hardware into software
embodiments. If the technology develops to make this transition trivial, however, the
inventor of any piece of digital electronics could acquire 75 years of protection without
having to prove nonobviousness or to pass an examination of the prior art. It would be
odd if the choice between two interchangeable media in which a given innovation could be
embodied, rather than the innovation itself, determined the form of legal protection
available for it.

145. A senior patent attorney of IBM Corp. was one of the first to perceive the dual
nature of programs as texts and machines. See Galbi, supra note 6, at 281. Programs are
not the first kind of work to have a dual character. Architectural works, for example, have
a dual character because they may be aesthetically pleasing and functional at the same
time. Literary works, however, have rarely had a dual character. The closest thing to a
discussion of dual-natured literary works in the copyright literature is the case of Baker v.
Selden, 101 U.S. 99 (1879). In Baker, the Court ruled that sample ledger sheets that
accompanied a book explaining an accounting systemn were unprotectable by copyright law
because they were functional, constituent parts of the accounting system described in the
book. See id. at 104-05. In the United States, and in many other countries (the most
notable exception being France), dual-natured industrial designs, such as those of
furniture, kitchen utensils, and automobiles, are generally unprotectable by copyright law.
See Reichman, Legal Hybrids, supra note 100, at 2461. Some countries (although not the
United States) have special laws to protect dual-natured industrial designs. See id.

HeinOnline -- 94 Colum. L. Rev. 2347 1994

2348 COLUMBIA LAW REVIEW [Vol. 94:2308

matter.}4® Copyright law has traditionally excluded machines and tech-
nological processes from its domain, leaving their protection to patent
law.147

146. It is worth noting that the United States Copyright Office initially had doubts
about the copyrightability of machine-executable code. The Office recognized that the
functionality of programs in machine-executable form might disqualify them from
copyright protection under principles from the Supreme Court decisions in White-Smith
Music Publishing Co. v. Apollo Co., 209 U.S. 1, 17 (1908) (concerning unreadability) and
Baker, 101 U.S. at 104-05 (concerning functionality). See George D. Cary, Copyright
Registration and Computer Programs, 11 Bull. Copyright Soc’y 362, 364-65 (1964). It
decided, however, in the mid-1960s, to issue registration certificates for programs,
although the certificates bore witness to the Office’s doubts as to the validity of claims to
copyrights in machine-executable programs. See id. Relatively few registrations occurred
in the decade and a half after this policy commenced. See CONTU Report, supra note 17,
at 29-30.

During the 1970s, proposals for sui generis protection for computer programs
emanated from a number of sources, including the World Intellectual Property
Organization and the Japanese Ministry of Trade and Industry. See WIPO Proposal, supra
note 6, at 6-9; Karjala, supra note 6, at 54-55. These proposals attempted to tailor
protection to the unusual nature of programs. Indeed, for a time, it seemed as though the
international consensus would favor sui generis protection, although this is easy to forget
in light of subsequent developments. See, e.g., Dworkin, supra note 6.

The turning point in the international debate about legal protection for computer
programs came in 1980 when the United States Congress endorsed the recommendations
of the CONTU Commission favoring copyright protection for programs. See Act of Dec.
12, 1980, Pub. L. No. 96-517, 94 Stat. 3015, 3028 (amending 17 U.S.C. § 117); CONTU
Report, supra note 17, at 23. Once the United States became firmly committed to
copyright protection for programs, it began a campaign to persuade other countries to
adopt the same approach because the export markets for its software products (which,
then as now, dominated the world software market) depended on effective legal protection
on an international basis for this very easily copied product. The first substantial victory in
the United States’ international campaign for copyright was in Japan. See, e.g., Barton,
supra note 6, at 266. Even after this victory, European policymakers and intellectual
property professionals continued to debate whether to adopt copyright or sui generis
protection for computer programs. In 1991 the European Council settled on copyright,
albeit with some sui generis provisions, in its Directive on the Legal Protection of
Computer Programs. See EC Directive, supra note 7. This settled the international debate
about the use of copyright to protect computer program code. See Dworkin, supra note 6,
The recently adopted GATT/TRIPs includes a provision requiring member states to
protect computer programs by copyright law. See GATT/TRIPs, supra note 8, at art. 10.1,
33 I.L.M. at 87. For a discussion of the ramifications of GATT/TRIPs for protection of
computer program innovations more generally, see J.H. Reichman, The TRIPS
Component of the GATT’s Uruguay Round: Competitive Prospects for Intellectual
Property Owners in an Integrated World Market, 4 Fordham Intell. Prop., Media & Ent.
LJ. 171 (1993) [hereinafter Reichman, GATT/TRIPs].

147. Utilitarian innovations have generally been protected, if at all, by patent and
trade secrecy law. See supra note 118. For the general rule against copyright protection
for machines and other utilitarian works, see, e.g., 17 U.S.C. § 113(b) (1988); Baker, 101
U.S. at 105 (accounting system). The Supreme Court in Baker indicated that the principle
of nonprotection for functional designs was as applicable when they were embodied in a
verbal description as when they were embodied in a drawing, 101 U.S. at 103, a point that
“cannot be overemphasized.” Reichman, Applied Know-How, supra note 5, at 695 n.288;
see also Finding a Balance, supra note 2, at 9-10 (noting that difficult questions in software
copyright case law concern whether program functionality, not just code, is protectable);

HeinOnline -- 94 Colum. L. Rev. 2348 1994

1994] MANIFESTO 2349

Even after Congress decided to make copyright protection available
to programs, their utilitarian character has made it difficult for courts to
apply traditional copyright doctrines to computer programs!“® and to
make distinctions that are legally as well as technically meaningful.14°
Courts have also frequently found the traditional tests for copyright in-
fringement to be unsatisfactory or unworkable as applied to computer
programs, and have consequently undertaken to develop new (and often
inconsistent) tests for judging infringement in software cases.}5¢ How-
ever, copyright has no ready answers to many questions posed in software
cases because it has never before regulated competition in technological

Samuelson, CONTU Revisited, supra note 5, at 727-53 (discussing reasons that utilitarian
works have been excluded from copyright). The only machine components, before
computer programs, that Congress had ever protected by copyright were sound
recordings. Although sound recordings are components of machines, they are protected
by copyright law because they generally embody musical works. See 17 U.S.C. § 102(a)
(1988) (identifying sound recordings as among the subject matters eligible for copyright
protection). As Professor Reichman explains, the bipolar structure of world intellectual
property law assigns innovations in utilitarian design to patent law and innovations in
literary and artistic works to copyright law. See Reichman, Legal Hybrids, supra note 100,
at 2448-51. The United States tradition that conceives of the patent and copyright
domains as mutually exclusive in subject matter derives from the United States Supreme
Court’s decision in Baker, 101 U.S. at 104-05. See, e.g., Taylor Instrument Cos. v. Fawley
Brost Co., 139 F.2d 98, 99-100 (7th Cir. 1943), cert. denied, 321 U.S. 785 (1944). For a
recent reaffirmation of this general principle by copyright scholars, see Borland Amicus
Brief, supra note 5, at 8-12; see generally Overlap Study, supra note 121 (concluding that
there is little if any overlap in the subject matter of patent and copyright law). There is,
however, some disagreement about mutual exclusivity in the case law and in the law review
literature. See, e.g., In re Yardley, 493 F.2d 1389, 1393-95 (C.C.P.A. 1974) (regarding
design patent and copyright as partially overlapping in subject matter); A. Samuel Oddi,
Functionality and Free Market Theory, 17 AIPLA Q.. 173, 178-82 (1989) (suggesting that
some subject matter overlap may also exist regarding utility patent and copyright law).

148. See, e.g., Computer Assacs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 704, 712 (2d
Cir. 1992) (stating that “[t]he essentially utilitarian nature of a computer program . . .
complicates the task of distilling its idea from its expression”); id. at 712 (regarding much
software copyright case law as “the courts’ attempt to fit the proverbial square peg in a
round hole”). See also Finding a Balance, supra note 2, at 22 (stating that programs’
functional aspects pose difficult questions for application of copyright).

149. See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 775 F. Supp. 544, 558-60
(E.D.NY. 1991) (discussing, with reference to a report prepared by Professor Davis,
technical deficiencies with the term “structure, sequence, and organization” as applied to
computer programs), aff’d in part, vacated in part, 982 F.2d 693 (2d Cir. 1992).

150. See, e.g., Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222 (3d Cir.
1986), cert. denied, 479 U.S. 1031 (1987); Lotus Dev. Corp. v. Paperback Software Int’],
740 F. Supp. 37 (D. Mass. 1990); Lotus Dev. Corp. v. Borland Int’l, Inc., 799 F. Supp. 203
(D. Mass. 1992) (modifying the Paperback test); Altai, 982 F.2d at 693; Gates Rubber Co. v.
Bando Chem. Indus., Ltd., 9 F.3d 823 (10th Cir. 1993) (expanding Altai test). For further
discussion of these tests, see infra notes 193-209 and accompanying text. Although
Professor Miller has argued that these cases are evolving toward a consistent standard, see
Miller, supra note 1, at 995-1013, the 24 copyright professors who signed an amicus brief
in Lotus v, Borland assert that the Whelan and Borland tests cannot be reconciled with the
Allai-Gates Rubber tests. See Borland Amicus Brief, supra note 5, at 33.

HeinOnline -- 94 Colum. L. Rev. 2349 1994

2350 COLUMBIA LAW REVIEW [Vol. 94:2308

fields.!>1 The very vocabulary and metaphorical structure of copyright
law makes it difficult to talk about programs in a meaningful way.152

Copyright law is mismatched to software, in part, because it does not
focus on the principal source of value in a program (its useful behavior).
As explained above, program text and behavior are largely independ-
ent,1%3 so that protecting program texts does not prevent second comers
from copying valuable program behavior. The ability to copy valuable
behavior legally would sharply reduce incentives for innovation, and thus
thwart the policy behind legal protection.5% As we explain below, the
right way out of this bind is not to conceive of behavior as a nonliteral
element of the program’s text, as some courts have done,!5% but instead
to regard it as the entity that an appropriate legal regime should protect.

Once one recognizes that computer programs are machines whose
medium of construction is text,156 it becomes obvious why copyright is an
inappropriate vehicle for protecting most program behavior. Copyright
law does not protect the behavior of physical machines (nor their inter-
nal construction), no matter how much originality they may embody.!57
Historically, innovations in the design of machine behavior have been left
to the rigors of patent law.

Congress did not intend to protect program behavior when provid-
ing copyright protection to programs. The statutory definition of com-

151. See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1513-14 (9th Cir.
1993) (whether decompiling program code to get access to interface information was an
issue of first impression); Paperback, 740 F. Supp. at 46 (whether user interface of
spreadsheet program was copyrightable treated as issue of first impression). The cases that
have not been troublesome as a matter of copyright law have been those involving exact
duplications of code or pictorial aspects of videogames. See, e.g., Apple Computer, Inc, v.
Franklin Computer Corp., 714 F.2d 1240, 1245 (3d Cir. 1983) (exact duplication of code),
cert. dismissed, 464 U.S. 1033 (1984); Stern Elecs., Inc. v. Kaufman, 669 F.2d 852 (2d Cir.
1982) (infringement of audiovisual aspects of videogame).

152. For discussion of this issue, see OTA Report, supra note 6, at 78-83; Davis,
Nature of Software, supra note 5, at 314; Pamela Samuelson, Reflections on the State of
American Software Copyright Law and the Perils of Teaching It, 13 Colum.-VLA J.L. & Arts
61, 73 (1988). Cases involving fabric designs, dramatic plays, or even accounting books do
not provide much insight about the industrial property problems presented in computer
software cases, such as whether internal interfaces of programs should be protected by
copyright law. See Altai, 982 F.2d at 704-05 (regarding Baker v. Selden, 101 U.S. 99
(1879), as the doctrinal starting point for judging copyright infringement in cases
involving utilitarian writings, but finding “scant guidance” in that case about whether a
compilation of internal interface information in a computer program was protectable
expression or idea; ultimately concluding it was “idea” because external factors constrained
Altai’s design choices).

153. See supra notes 22-24 and accompanying text.

154. See supra notes 101-108 and accompanying text.

155. See, e.g., Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 223, 231-32 (D.
Mass. 1993) (extending copyright protection to nonliteral aspects of command hierarchy).

156. See supra notes 30—42 and accompanying text.
157. See supra note 147 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2350 1994

1994] MANIFESTO 2351

puter program clearly protects program texts.!5® But there is nothing in
the statute nor in the legislative history to indicate that Congress in-
tended for copyright to protect the results (that is, behavior) brought
about by the execution of program instructions.1%°

If anything, the copyright statute would seem to preclude copyright
protection for useful program behavior. Section 102(b) states, in perti-
nent part: “In no case does copyright protection for an original work of
authorship extend to any . . . procedure, process, system, [or] method of
operation . . . regardless of the form in which it is described, explained,
illustrated, or embodied in such work.”16% According to Professor Miller,
Chair of the National Commission on New Technological Uses of Copy-
righted Works (CONTU) subcommittee responsible for recommending
copyright protection for computer software,!¢! the CONTU Commission-
ers believed “that copyright should not block anyone from developing
their own software, even if that software were to perform the same func-
tion as pre-existing software and were to accomplish it in the same way.”1%2
Some recent cases have rejected copyright claims for the behavior of pro-
grams on the ground that behavior is among the processes made unpro-
tectable by section 102(b).163

That program behavior, in general, is unprotectable by copyright law
on account of its functionality does not mean that behavior can never be
protected by copyright law. Sometimes program behavior is “expressive”
in a traditional copyright sense; when it is, copyright applies. Recall that
program text is a medium in which it is possible to construct both useful
and expressive behaviors.}6* Just as it is possible to construct both useful
devices (such as chairs or screwdrivers) and expressive devices (such as
sculptures or music boxes) out of media such as steel and plastic, it is

158. See 17 U.S.C. §101 (1988) (defining “‘computer program’ [as] a set of
statements or instructions to be used directly or indirectly in a computer in order to bring
about a certain result”).

159. See H.R. Rep. No. 1307, 96th Cong., 2d Sess., pt.1, at 23 (1980), reprinted in
1980 U.S.C.C.A.N. 6460, 6482 (citing CONTU Report as source for new legislation with no
additional discussion to indicate addition of copyright protection for program results);
Borland Amicus Brief, supra note 5, at 5-12 (functional processes brought about by the
execution of program instructions unprotectable by copyright); CONTU Report, supra
note 17, 37-46 (discussing program text); see also Paul Goldstein, Infringement of
Copyright in Computer Programs, 47 U. Pitt. L. Rev. 1119, 1124-26 (1986) (regarding
manner in which programs perform their functions as unprotectable by copyright).

160. 17 U.S.C. § 102(b) (1988).

161. See CONTU Report, supra note 17, at 10.

162. Declaration of Arthur R. Miller at 4, Evergreen Consulting, Inc. v. NCR Comten,
Inc., No. GV 82-5946 (C.D. Cal. Jan. 3, 1985) (emphasis added) [hereinafter Miller
Declaration]; see also CONTU Report, supra note 17, at 39-41.

163. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 836 (10th Cir.
1993); Computer Assocs. Int'l v. Altai, Inc., 775 F. Supp. 544, 560 (E.D.N.Y. 1991), aff'd in
part, vacated in part on other grounds, 982 F.2d 693 (2d Cir. 1992). But see Lotus Dev.
Corp. v. Borland Int], Inc., 831 F. Supp. 223 (D. Mass. 1993) (regarding program behavior
as “nonliteral” aspect of program text protectable by copyright if alternatives possible).

164. See supra text accompanying note 43.

HeinOnline -- 94 Colum. L. Rev. 2351 1994

2352 COLUMBIA LAW REVIEW [Vol. 94:2308

possible to construct both useful behaviors and expressive behaviors out
of software.

United States law has devised imperfect, yet nonetheless workable,
ways to distinguish between a copyrightable sculpture and an un-
copyrightable tool when dealing with artifacts made of steel or plastic,165
It can make similar distinctions between the expressive and functional
behavior of computer programs. That it may occasionally be difficult to
distinguish between a useful artifact and an expressive artifact (e.g., a ki-
netic sculpture) does not make easy cases impossible to recognize. Nor
does it undermine the usefulness of a general distinguishing principle of
this sort.

When the execution of program instructions results in the display of
pictures or text that qualify as an original work of authorship separate
from the program that generated it, copyright protection for the picture
or text is appropriate.186 When the execution of program instructions
results in a series of pictorial images combined with text and sounds, pro-
gram behavior can be part of a copyrightable audiovisual work.167

When program behavior has both functional and expressive compo-
nents, it should generally be easy to distinguish between them for copy-
right purposes. The primary function of screen-saver programs, for ex-
ample, is to produce behavior that protects computer screens from
burnout. Screen-saver behavior may also include moving pictures of fly-
ing toasters. If a second comer copies the flying toaster graphics, copy-
right infringement is likely.158 Courts should not, however, find copy-
right infringement if a second comer develops a program that protects

165. See, e.g., Brandir Int’], Inc. v. Cascade Pac. Lumber Co., 834 F.2d 1142, 1145 (2d
Cir. 1987) (holding that derivative design of copyrighted sculpture was uncopyrightable
because functional and artistic design elements were inseparable in resulting bicycle rack);
Esquire, Inc. v. Ringer, 591 F.2d 796 (D.C. Cir. 1978), cert. denied, 440 U.S. 908 (1979)
(holding overall shape or configuration of utilitarian article noncopyrightable, no matter
how unique or aesthetically pleasing). For a thorough discussion of the difficulties of
distinguishing between applied art and industrial design, see Reichman, Design Protection
1948-1976, supra note 54 (discussing regulation of ornamental designs in useful articles);
Reichman, Design Protection After 1976, supra note 54 (discussing response of courts and
administrators to dilemmas in design protection).

166. See, e.g., Computer Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 703 (2d Cir. 1992)
(indicating that results generated by execution of programs’ instructions must be
independently copyrightable for similarities to form basis of infringement claim).

167. See, e.g., Stern Elec., Inc. v. Kaufman, 669 F.2d 852 (2d Cir. 1982) (audiovisual
copyright in videogame’s repetitive sequence). Some aspects of a videogame’s behavior
are not protectable by copyright law. See, e.g, Data East USA, Inc. v. Epyx, Inc., 862 F.2d
204, 209 (9th Cir. 1988) (holding elements of karate videogame “subject to the constraints
inherent in the sport” unprotectable by copyright).

168. Berkeley Software brought suit against the developer of a competing screen saver
program that parodied the Berkeley “After Dark” flying toaster graphics. Ironically,
Jefferson Airplane recently sued Berkeley for copying flying toasters from one of Airplane’s
record album covers. See Jim Doyle, Jefferson Airplane Files Copyright Suit, S.F. Chron.,
June 15, 1994, at Al4.

HeinOnline -- 94 Colum. L. Rev. 2352 1994

1994] MANIFESTO 2353

computer screens from burnout in a manner that is functionally indistin-
guishable from the first program.169

Although neither CONTU nor Congress specifically stated that copy-
right should protect expressive program behavior, such protection is con-
sistent with the copyright statute. Section 102(a) states that “[c]opyright
protection subsists . . . in original works of authorship fixed in any tangi-
ble medium of expression, now known or later developed.”'”® Original
works, such as text and pictures, that have been fixed in the medium of
program code should qualify for copyright protection just as if they had
first been fixed in print or on canvas.!7!

If the industrial designs of programs cannot generally be protected
by patents because they do not meet the patent invention standard, but
need some legal protection, one might ask whether copyright law could
supply this protection. The originality standard of copyright law would
not pose a problem for most industrial design elements of programs be-
cause program development requires creativity.172

However, by enacting section 102(b),!”® Congress intended to ex-
clude industrial design elements of programs—processes, procedures,
systems, and methods of operation—from the scope of copyright protec-
tion, as is evident from the legislative history of this provision. The House
and Senate Reports explain:

Some concern has been expressed lest copyright in computer

programs should extend protection to the methodology or

processes adopted by the programmer rather than merely to the

“writing” expressing his ideas. Section 102(b) is intended,

among other things, to make clear that the expression adopted

by the programmer is the copyrightable element in a computer

program, and that the actual process or methods embodied in

the program are not within the scope of copyright law.174

At virtually all levels of abstraction above the literal text, a program
consists of procedures, processes, systems, methods of operation, or their
components. The exclusion of some industrial design elements of pro-

169. Some courts have nonetheless found copyright infringement in these
circumstances. See, e.g., Lotus Dev. Corp. v. Borland Int’], Inc., 831 F. Supp. 223 (D. Mass.
1993). For a more complete discussion, see infra notes 172-209 and accompanying text.

170. 17 US.C. § 102(a) (1988).

171. In his concurrence to the CONTU Report, Professor Nimmer suggested that, in
time, Congress might decide to use copyright law only to protect those programs that
produced copyrightable works. See CONTU Report, supra note 17, at 27. He also foresaw
the danger that protecting programs by copyright law might have the effect of converting
copyright law to a general misappropriation law, intruding on the patent domain, and
posing serious constitutional and policy questions. See id. at 26.

172. For copyright’s originality requirement, see Feist Publications, Inc. v. Rural Tel.
Serv. Co., 499 U.S. 340 (1991) (holding telephone book to lack modicum of creativity
required to meet “originality” requirement).

173. 17 U.S.C. § 102(b) (1988).

174. HR. Rep. No. 1476, 94th Cong., 2d Sess. 57 (1976), reprinted in 1976
U.S.C.C.AN. 5659, 5670; S. Rep. No. 473, 94th Cong., 1st Sess. 54 (1976).

HeinOnline -- 94 Colum. L. Rev. 2353 1994

2354 COLUMBIA LAW REVIEW [Vol. 94:2308

grams from the scope of copyright is consistent with longstanding princi-
ples of both copyright and patent law, and competition policy objectives
that underlie these laws.1?>

Proponents of a broader scope of copyright protection for computer
programs tried to persuade both CONTU and Congress to support an
amendment to section 102(b) that would have allowed copyright protec-
tion for “the logical choices made by those personnel working on the
design phase of program development.”’7¢ The amended section 102(b)
would have provided: “However, copyright protection may exist in a col-
lection of ideas or abstractions, arbitrarily selected from a plurality of al-
ternative ideas or abstractions or in a discretionary pattern of events or
processes.” 77 Professor Miller reports that CONTU rejected this propo-
sal “because it would have been inconsistent with the traditional nature of
copyright protection for particular forms of expression and not for un-
derlying processes.”??® CONTU also “declined to adopt a recommenda-
tion by proponents of copyright for the logic of computer operations that
would have amended the Copyright Act to provide that ‘[a] computer
program may be a derivative work of a flow chart and either may be a
derivative work of a literary work.” "179

The reason CONTU rejected these proposals was simple:

175. See supra notes 18-21 for the nature of programs. For discussions of policy, see
Karjala, supra note 1, at 36~41; Arthur J. Levine, Comment on Bonito Boats Follow-up: The
Supreme Court’s Likely Rejection of Nonliteral Software Copyright Protection, Computer
Law., July 1989, at 29; Menell, supra note 1, at 1081; D.C. Toedt, Bonito Boats Follow-up:
Free Competition Public Interests vs. the Substantial Similarity Test—Does The Legislative
History Actually Support Nonliteral Software Copyright Protection, Computer Law., July
1989, at 14.

The CONTU Report, on which Congress relied in enacting the computer-program-
related amendments to the copyright statute, seems to have contemplated that copyright
would protect program code, because all of the examples of infringing acts described in
the Commission’s report were examples of exact copying. See CONTU Report, supra note
17, at 21-23. The Commission’s stated economic rationale for using copyright to protect
programs also focused on exact copying. See id. at 11. CONTU referenced 17 U.S.C.
§ 102(b) as among the limiting provisions and doctrines of copyright law that would apply
to programs. See id. at 18-20.

176. Second Declaration of Arthur R. Miller at 4, Evergreen Consulting, Inc. v. NCR
Comten, Inc., No. CV 82-5946 (C.D. Cal. June 24, 1985) [hereinafter Second Miller
Declaration].

177. 1d. at 4 n.2.

178. Id. at 4. Miller observed that the tradition of not protecting such processes went
back to Baker v. Selden, 101 U.S. 99 (1879), and served to differentiate computer
programs from fanciful works. See Second Miller Declaration, supra note 176, at 7.

179. See Second Miller Declaration, supra note 176, at 4. Had such a provision been
enacted, Miller noted, it “could have effectively granted monopolies over logical processes
through the registration of copyrights on flow charts, irrespective of whether such
processes would meet patentability requirements.” This was not consistent, Miller insisted,
with what Congress intended by enactment of § 102(b), nor with the public policies
underlying patent law, which protects only nonobvious advances in the technological arts,
and then only if patent requirements have been satisfied. See id. at 4-5.

HeinOnline -- 94 Colum. L. Rev. 2354 1994

1994] MANIFESTO 2355

To argue that copyright protection should be afforded to com-
puter program processes that are not novel enough to satisfy the
statutory requirements for patent protection because they are
the result of creative effort and the investment of substantial re-
sources, is to voice what may be a legitimate concern in the
wrong legal environment. The Copyright law is not the forum
for determining how to deal with such a problem, assuming one
exists,180
If there is a gap in the legal protection regime for computer software,
Miller seemed to say, it should emanate from Congress, not by wrenching
copyright law beyond its statutory bounds.181

This result does not change if one characterizes the abstract design
of programs as an industrial compilation of applied know-how. Of
course, copyright law has a long history of protecting compilations of in-
formation.1®2 It has, however, accorded either no or relatively thin pro-
tection to compilations of industrial or technological elements.}3% Many
industrial compilations (such as a combination of machine components)
have been excluded from copyright protection because of their intrinsic
utility.’8 Others, such as those created when someone selects or ar-
ranges information in accordance with a method, system, or other func-
tionally determined design, are also unprotectable by copyright law.185
Even when copyright protection has been available for a work consisting
largely of industrial information (such as a manual for operating a power
plant), it has not protected the know-how, only the author’s manner of
describing the know-how.186 The commercially valuable aspects of indus-
trial compilations of applied know-how have generally been protected by
trade secret, not copyright.187

180. Id. at 12.

181. Miller has recently changed his views about copyright protection for programs.
He now argues that copyright protection should extend to creative aspects of programs in
order to create the proper incentives for software development. See Miller, supra note 1,
at 1006-10. This does not, however, alter the historical fact that CONTU and Congress
rejected proposals to make all discretionary program design choices protectable by
copyright law. Interestingly, Miller’s recent article on software protection does not discuss
section 102(b) of the copyright statute or the long line of cases holding that the functional
designs embodied in copyrighted works are unprotectable by copyright law. For a partial
listing of such cases, see Samuelson, Critique of Paperback, supra note 5, at 324 n.61.

182. The first United States copyright statute permitted copyright protection for
books, maps, and charts. See Ginsburg, supra note 74, at 1873-88 (discussing long history
of copyright protection for compilations of information).

183. See Reichman, Applied Know-How, supra note 5, at 691-92.

184. See supra note 147.

185. See Baker v. Selden, 101 U.S. 99, 103 (1879) (accounting forms); Kregos v.
Associated Press, 937 F.2d 700, 703-10 (2d Cir. 1991) (baseball pitching statistics form).
Patents may sometimes be available for inventive methods or systems of this sort. See
Chisum, Algorithms, supra note 1, at 1021-22 (giving examples of patents on functional
information innovations).

186. See Baker, 101 U.S, at 104.

187. See supra note 118.

HeinOnline -- 94 Colum. L. Rev. 2355 1994

2356 COLUMBIA LAW REVIEW [Vol. 94:2308

If program compilations are too technological to be protected by
copyright, one might still argue for copyright protection based on the
line of cases protecting “sweat of the brow.” Until recently, American
copyright case law extended copyright protection to factual compilations
lacking creativity in selection or arrangement of elements, on the theory
that without protection by copyright, there would be too little incentive
to invest in the production and dissemination of these useful works.188 If
these “sweat of the brow” cases were still viable precedents, they would
provide a basis for copyright protection of the compilations of applied
know-how in programs. However, the Supreme Court, in Feist Publica-
tions, Inc. v. Rural Telephone Service Co.,'%° rejected the “sweat of the brow”
rationale for extending copyright protection to compilations that lacked
expressive originality.

2.3 Use of Traditional Legal Regimes to Protect Software Innovations
Will Lead to Cycles of Under- and Overprotection

In a report to the Congress on intellectual property protection for
computer software, the Office of Technology Assessment once stated that
if copyright did not protect more than the literal code of computer pro-
grams, it would protect too little, and if it protected more than the literal
code, it would protect too much.1®® We agree and make a similar point
about patents: Most of the commercially significant innovations in
software will be underprotected if patent law adheres to its traditional
bounds; yet if this law is stretched to protect commercially valuable pro-
gram innovations, it will overprotect them.19!

Professor Reichman has shown that use of classical intellectual prop-
erty regimes to protect other dual-nature works, such as industrial designs
of manufactured products, has produced recurrent cycles of under- and
overprotection over a two-hundred-year period.192 These cycles generally
start when legal authorities resist efforts to extend the bounds of existing
law. This brings about underprotection. Faced with the market-destruc-

188. See Ginsburg, supra note 74, at 1909-13.

189. 499 U.S. 340, 353-54 (1991).

190. OTA Report, supra note 6, at 78; see also Reichman, Applied Know-How, supra
note 5.

191. Underlying the effort to make copyright law into a trade secrecy protection law,
see infra notes 324-330 and accompanying text, have been concerns about under- and
overprotection for valuable aspects of software. If the effort to use copyright law to prevent
intermediate copying of programs in order to get access to internal design elements had
succeeded, software would have been accorded a 75 year exception to the general trade
secrecy rule that reverse analysis of mass-marketed products is lawful. See 17 U.S.C. § 302
(1988) (setting forth duration of copyright for works published by firms). This duration
would have been out of proportion to any harmful market effects that could have arisen
from such reverse analysis. Yet, without copyright to protect internal design elements as
trade secrets, these innovations are likely to be underprotected by existing regimes. See
Reichman, Overlapping Rights, supra note 5.

192. See Reichman, Design Protection 1948-1976, supra note 54, at 1143,

HeinOnline -- 94 Colum. L. Rev. 2356 1994

1994] MANIFESTO 2357

tive effects of underprotection, legal authorities have sometimes been
persuaded to extend the boundaries of existing regimes to protect the
dual-natured innovations before them. Although such boundary exten-
sion may solve one developer’s immediate underprotection problem, it
often hurts the market as a whole by overprotecting incremental techni-
cal innovations embodied in publicly distributed products.

The remainder of this subsection will demonstrate that cycles of
under- and overprotection of software innovations by existing legal re-
gimes are underway in American law. To avoid these cycles, a new legal
regime is needed that protects industrial design elements in programs
from trivial acquisitions of functional equivalence.

2.3.1 Use of Copyright to Protect Industrial Designs Leads To Under-
and Overprotection

Within the traditional framework of copyright law, judges have two
equally unpalatable options when dealing with a defendant who has ap-
propriated commercially valuable industrial design elements from an-
other firm’s program: either not protecting those design elements at all,
or protecting them for seventy-five years.}93 This is a choice between un-
derprotection and overprotection. Cycles of under- and overprotection
occur as courts oscillate between extending broad protection out of con-
cern that software will otherwise be underprotected by the law and per-
mitting valuable designs to be freely copied in accordance with well-estab-
lished limiting doctrines of copyright law.

Whelan Associates v. Jaslow Dental Laboratory, Inc. is the clearest exam-
ple of a decision in which the prospect of underprotection led a court to
construe the scope of copyright protection for programs very expan-
sively.19¢ Relying on evidence indicating that the design of software was

193. See 17 U.S.C. § 302(c) (1988) (providing that works authored by firms receive
copyright protection for 75 years from the date of publication or 100 years from creation,
whichever is less). Occasionally, a software developer will be lucky enough to enjoy both
the peak and the valley of these cycles, Compare Synercom Technology, Inc. v. University
Computing Co., 462 F. Supp. 1003 (N.D. Tex. 1978) (holding that input formats are
unprotectable by copyright) (Engineering Dynamics, the principal defendant) with
Engineering Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335 (5th Cir. 1994)
(ruling that case law had evolved since Synercom and that input formats may now be
protectable by copyright).

194. '797 F.2d 1222 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987). Whelan, like
other software copyright plaintiffs, argued that computer programs are “literary works”
within the meaning of the copyright statute, and if copyright protects the “structure,
sequence, and organization” (SSO) of other literary works as “nonliteral elements” of their
text, then surely the SSO of programs can also be protected by copyright law. See id. at
1234. Even the Second Circuit’s Altai decision which is otherwise critical of Whelan, see
infra note 201, found this syllogism persuasive. See Computer Assocs. Int’l v. Altai, Inc.,
982 F.2d 693, 702 (2d Cir. 1992). Of course, an article reporting a mathematical or
scientific breakthrough is also a “literary work” within the meaning of 17 U.S.C. § 101. Yet,
the logic and structure of the mathematical formula or scientific analysis described in the
article would not be within the scope of copyright under 17 U.S.C. § 102(b). Nor, if the

HeinOnline -- 94 Colum. L. Rev. 2357 1994

2358 COLUMBIA LAW REVIEW [Vol. 94:2308

the most creative, costly, and valuable of its aspects and that design
needed protection if software developers were to have sufficient incen-
tives to invest in innovative designs,19% this court decided that everything
about a program, except its general purpose or function, was protectable
“expression.”’%¢ If, however, there were only one or very few ways to per-
form a function, the court would consider “idea” and “expression” to be
“merged” and no copyright protection would be available for the merged
expression.197

article was about a new industrial process, would a copyright in the article protect the
structure, sequence, and organization of the process, under the principles of Baker v.
Selden, 101 U.S. 99 (1879), and its progeny.

Some commentators have likened computer programs to “poetry” hoping that this
would persuade courts to grant the broad scope of copyright protection that artistic and
fanciful works have generally enjoyed, rather than the thin scope of protection typically
accorded to functional writings. See, e.g., Clapes et al.,, supra note 1, at 1497, 1504
(quoting computer scientist Frederick Brooks who likened programmers to poets); Miller,
supra note 1, at 984, 995 (comparing communicative precision required of a programmer
to that of a poet working within constraints of iambic pentameter).

Frederick Brooks, however, says he gave up the metaphor of “writing” in relation to
programs in 1958 in favor of the metaphor of “building” programs. See Brooks, supra note
36, at 18. Brooks also endorses the use of software engineering techniques to improve the
industrial design of programs. See id. As we have explained above, supra note 73 and
accompanying text, it is accurate to characterize programmers as engineers. It does not
denigrate the creativity required to do such tasks to refer to programs as products of
incrementally innovative engineering. It does, however, limit the scope of copyright
protection. .

195. See Whelan, 797 F.2d at 1231, 1237.

196. See id. at 1236.

197. See id. at 1236. The “merger” doctrine is a well-established principle of United
States copyright law. See Paul Goldstein, Copyright Principles, Law & Practice § 2.3.2
(1989). Professor Menell has proposed using the merger doctrine to avoid the
economically harmful consequences of overbroad decisions, such as Whelan. He suggests
that courts apply the doctrine whenever network externalities make some aspect of a
program the de facto industry standard, such that other competitors need to reproduce it
to compete effectively, or when a component of a program is the most efficient means of
performing its function. See Menell, supra note 1, at 1050, 1084-88.

Some judges have approximated this result by regarding user expectations as
“external factors” constraining the design choices of subsequent developers. See, e.g.,
Plains Cotton Coop. Ass’n v. Goodpasture Computer Serv., Inc., 807 F.2d 1256, 1262 (5th
Cir.), cert. denied, 484 U.S. 821 (1987). Other judges, most notably Judge Keeton in the
Lotus cases, have rejected these arguments. Judge Keeton believes that punishing
successful software developers by forcing them to contribute functionally optimal or de
facto standard designs to the public domain would subvert the basic purpose of copyright.
See Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 79 (D. Mass. 1990).

While we think Menell’s proposal is better, as a matter of copyright law, than the
overbroad Whelan-Paperback approach, we agree with Judge Keeton that functionally
optimal software designs and de facto standards should enjoy some degree of protection
under an appropriate legal regime for software innovations. See infra notes 368-371 and
accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2358 1994

1994] MANIFESTO 2359

In attempting to save the software industry from underprotection,
the Whelan court inadvertently thrust it into overprotection,!9® and con-
travened the explicit intent of Congress.}®® The Whelarn approach would
treat as “expression” every discretionary choice made during the design
phase of program development, as though Congress had adopted the
proposed amendments to section 102(b) that it and CONTU had, in fact,
rejected.200

The case that turned the tide against the expansive Whelan approach
was the 1992 Second Circuit Court of Appeals decision in Computer Associ-
ates International, Inc. v. Altai, Inc.29! The court in Altai recognized that
programs were utilitarian works, and under traditional principles of copy-
right case law such as those reflected in Baker v. Selden®%? and the statu-

198. The Whelan decision initially attracted some support from other courts. See, e.g.,
Paperback, ‘740 F. Supp. at 52; Broderbund Software, Inc. v. Unison World, Inc., 648 F.
Supp. 1127, 1133 (N.D. Cal. 1986). But see Plains Cotton, 807 F.2d at 1262. This support
eroded as courts began to realize, in part because of a flood of critical commentary about
Whelan and its test for software copyright infringement, that the Whelan approach would
overprotect innovation in software. For a partial listing of the law review criticism of
Whelan, see, e.g., Borland Amicus Brief, supra note 5, at 28 n.55. For recent decisions
critical of Whelan, see infra note 201 and accompanying text.

199. See supra notes 173-181 and accompanying text regarding 17 U.S.C. § 102(b)
and the congressional concern about overprotection of program innovations by copyright
law that motivated its enactment.

The court in Whelan did not even try to distinguish between the “structure, sequence,
and organization” of programs that it thought copyright law could protect, and the
processes, procedures, systems, and methods of operation that 17 U.S.C. §102(b)
rendered unprotectable by copyright.

Not only did Whelan ignore the basic copyright policy, it also undermined the
economic policies underlying patent law. Protecting unpatentable processes and the like
through copyright law would contravene the economic policies underlying patent law, for
it would give a very long period of exclusive rights to innovations that have not undergone
the rigorous examination process required by the patent system nor met the patent
standards. See, e.g., Dennis S. Karjala, Recent United States and International
Developments in Software Protection (pt. 1), 16 Eur. Intell. Prop. Rev. 13, 14 (1994);
Menell, supra note 1, at 1049-50.

200. See supra notes 176-181 and accompanying text.

201. 982 F.2d 693 (2d Cir. 1992). The court in Altai criticized Whelan for taking an
overbroad view about the scope of protection available to programs from copyright law, for
having an outmoded understanding of computer science, and for relying too much on
metaphysical distinctions rather than practical realities. See id. at 705-06. The court also
criticized arguments that programs should be given a broad scope of protection by
copyright lest there be insufficient incentives to invest in software development. It
regarded these arguments as inconsistent with the Supreme Court’s decision in Feist
Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340 (1991). See Altai, 982 F.2d at
711-12. Among the cases endorsing Altai are Gates Rubber Co. v. Bando Chem. Indus.,
Lid., 9 F.3d 823, 841 (10th Cir. 1993); Sega Enters. v. Accolade, Inc., 977 F.2d 1510,
152425 (9th Cir. 1992); and Atari Games Corp. v. Nintendo of America, Inc., 975 F.2d
832, 839 (Fed. Cir. 1992). Other appellate decisions that are more consistent with Altai
than with Whelan are: Brown Bag Software v. Symantec Corp., 960 F.2d 1465 (9th Cir.),
cert. denied, 113 S. Ct. 198 (1992); and Plains Cotton, 807 F.2d at 1256.

202. 101 U.S. 99 (1879). Altai spoke of Baker v. Selden as “the doctrinal starting point”
in analysis of cases involving utilitarian works, such as computer programs. Alfai, 982 F.2d

HeinOnline -- 94 Colum. L. Rev. 2359 1994

2360 COLUMBIA LAW REVIEW [Vol. 94:2308

tory exclusion of processes and systems under section 102(b),2°% pro-
grams—Ilike other utilitarian works—should enjoy, at most, a narrow
scope of copyright protection. The court also identified three classes of
elements that should be “filtered out” as unprotectable material before
making a determination of infringement: elements that are dictated by
efficiency; elements that are constrained by external factors, such as the
hardware or software with which the program needed to be compatible;
and elements common in the industry or otherwise in the public do-
main.2% The court reasoned that these elements were beyond the scope
of protection that copyright law provides to qualifying works of author-
ship, so that others should be free to use them in subsequent works.205
As the court seemed to acknowledge in Altai, filtering out all of the
unprotected elements may leave little besides the program’s text as pro-
tectable expression.2%¢ It responded to incentive-based arguments for
stretching copyright law to protect all of the valuable nonliteral elements
of programs by saying that while the arguments had some appeal from a
pure policy standpoint, ultimately they would “have a corrosive effect on

at 704. See also Sega, 977 F.2d at 1524 (also discussing the importance of Baker v. Selden in
cases involving works with a high degree of functional content).

203. See Altai, 982 F.2d at 704-05. For a discussion of the implications of Baker v.
Selden for understanding the exclusions from the scope of copyright set forth in 17 U.S.C.
§ 102(b), see Reichman, Applied Know-How, supra note 5, at 693-95 n.288; Samuelson,
Critique of Paperback, supra note 5, at 325-36; see also Borland Amicus Brief, supra note 5,
at 12-19 (asserting that Congress enacted § 102(b) to embody principles of Baker,
including notion that utilitarian systems and processes are uncopyrightable).

204. See Altai, 982 F.2d at 706-12. See supra note 58 concerning efficiency as a
constraint on design choices. Although we agree that these elements of programs should
be filtered out in the final stage of an infringement determination, we note that the Altai
decision seems to begin with much the same assumption as Whelan: that “nonliteral”
elements of programs should be treated as “expression,” absent some limiting principle or
doctrine of copyright law that filters them out of infringement consideration. Because
abstract elements of programs are so frequently components of the processes and
procedures implemented by the programs, the more appropriate assumption would be to
regard them as unprotectable processes unless shown to be expressive. Interestingly, Altai
did not expressly direct filtration of processes, procedures, systems and methods of
operation embodied in programs, as 17 U.S.C. § 102(b) seems to require. In some
decisions following Altai, courts have also begun filtering out the processes, procedures,
systems, and methods of operation that section 102(b) excludes from copyright protection.
See, e.g., Gates Rubber, 9 F.3d at 836; Apple Computer, Inc. v. Microsoft Corp., 799 F. Supp.
1006, 1021 (N.D. Cal. 1992), aff’d, 35 F.3d 1435 (9th Cir. 1994). See supra notes 173-181
and accompanying text for a discussion of section 102(b).

205. See Altai, 982 F.2d at 707-10; see also Feist Publications, Inc. v. Rural Tel. Serv.
Co., 499 U.S. 340, 361-64 (10th Cir. 1991) (affirming right of public to copy unprotected
matter from copyrighted works, including incorporation in subsequent works).

206. See Altai, 982 F.2d at 712 (“[I]t may well be that the Copyright Act serves as a
relatively weak barrier against public access to the theoretical interstices behind a
program’s source and object codes.”) The Altai decision brought to the surface a new
round of concerns about underprotection of program innovations by copyright law. See,
e.g., John Markoff, Ruling Restricts Copyright Protection, N.Y. Times, June 24, 1992, at D1;
Jonathan M. Moses, Court Eases Copyright Rules For Software, Wall St. J., June 24, 1992, at
Bl.

HeinOnline -- 94 Colum. L. Rev. 2360 1994

1994] MANIFESTO 2361

certain fundamental tenets of copyright doctrine.”?°7 Professor Karjala
has pointed out that some of the decisions purporting to follow Altai have
tended to do less filtration than Altai would seem to require.208 We sug-
gest that they have done this out of concern that program innovations
would be legally underprotected if the courts took filtration seriously.20°

2.3.2 Cycles of Under- and Overprotection Have Also Been Evident in
Patent Law

Concerns about overprotection contributed to the initial policy de-
nying patents for software innovations.?!® A 1966 Presidential Commis-
sion recommended against patent protection for program innovations, in
part, because programs were already protected by copyright law.211 Jt
noted that progress in this field was occurring without patents,?12 and was
also concerned that the Patent Office would be unable to make good
judgments about software-related applications because it did not have a
repository on the state of this art, appropriately trained examiners, or an
adequate classification system for software innovations, as well as because
it would be flooded with applications it did not have the resources to
handle.213

The Supreme Court also expressed concern about overprotection
when it rejected patent claims for a program algorithm to convert binary
coded decimals to pure binary form.21¢ The Court worried that patents
on algorithms would impede the widespread use of mathematical ideas,
which, like scientific principles and laws of nature, had long been re-

207, Altai, 982 F.2d at 712. The court went on to say that “[i]f the test we have
outlined results in narrowing the scope of protection, as we expect it will, that result flows
from applying, in accordance with Congressional intent, longstanding principles of
copyright law to computer programs.” Id. The court expressed concern “that these
fundamental principles remain undistorted.” Id.

208. See Dennis S. Karjala, Recent United States and International Developments in
Software Protection (pt. 2), 16 Eur. Intell. Prop. Rev. 58, 60-62 (1994).

209. For a recent airing of such concerns, see, e.g., Julian Velasco, Note, The
Copyrightability of Nonliteral Elements of Computer Programs, 94 Colum. L. Rev. 242, 285
(1994).

210. See supra notes 121~130 and accompanying text concerning the initial policy on
patenting software innovations.

211, See President’s Comm’n on the Patent System, “To Promote the Progress of . . .
Useful Arts” in an Age of Exploding Technology 13 (1966) [hereinafter 1966 Report].

212. See id. This suggests that the Commission thought that patents might be
disruptive to that progress.

213. Seeid. A Patent Office ill-equipped to make good judgments on software-related
applications would likely issue many “bad” patents, that is, patents on ideas that,
unbeknownst to the Patent Office, were already in the state of the art, were only modest
advances in the art, or needed to be claimed more narrowly in view of the prior art. “Bad”
patents are overprotective.

214. See Gottschalk v. Benson, 409 U.S. 63, 72-73 (1972). The Court quoted at
length from the 1966 Report’s recommendations against patents for software. See id. at
72.

HeinOnline -- 94 Colum. L. Rev. 2361 1994

2362 COLUMBIA LAW REVIEW [Vol. 94:2308

garded as unpatentable subject matter.215> Also, because algorithms
sometimes have an extremely wide array of potential applications, includ-
ing ones never envisioned by the discoverer of the algorithm, the Court
worried that patents for algorithms would overprotect these
innovations.216

As the software industry became more commercially significant, the
early concerns about possible overprotection of program innovations
through patents subsided and were replaced by concerns that the initially
constrictive patent policy toward software innovation might, in fact, un-
derprotect valuable aspects of programs.2!7 By the mid-1980s, the Patent
and Trademark Office had begun to give an increasingly broad construc-
tion to the patent subject matter provisions. This was partly as a result of
pressure from some industry sectors—mainly computer companies, not
those who considered themselves “software publishers”2!8—and partly as
a result of several appellate court decisions that narrowly construed the
Supreme Court precedents on software-related patents.2!® Today, the
Patent and Trademark Office seems to regard almost all program-related
innovations, except perhaps those claiming “mathematical algorithms and
abstract mathematical formulae,” as patentable subject matter.220

215. See id. at 67.

216. See id. at 67, 71; see also Parker v. Flook, 437 U.S. 584, 595-96 (1978) (rejecting
claim for industrial application of mathematical algorithm as unpatentable subject matter;
finding no congressional intent to protect such innovations by patent law).

217. See Chisum, Algorithms, supra note 1, at 1013-20.

218. Major computer companies, such as IBM, were initially opposed to patent
protection for software innovations, such as algorithms. See Gottschalk, 409 U.S. at 63
(indicating briefs amici curiae filed in support of Patent Office’s position on behalf of
Burroughs Corp., Honeywell, Inc., International Business Machines Corp., and Business
Equipment Manufacturers Ass’n). This position was consonant with their business
interests at the time. As hardware vendors, they supplied software with their machines only
as a way to make the hardware more desirable. Patents might have required them to pay
royalties on innovations that, in effect, they gave away with hardware. As the market for
software evolved and computer firms began to perceive how lucrative the software business
could be, they became some of the most ardent supporters of software patents. See John P.
Sumner & Steven W. Lundberg, Software Patents: Are They Here To Stay?, 8 Computer
Law., Oct. 1991, at 8, app. at 13-15 (presenting views of computer industry lawyers favoring
patents for software innovations). The computer firms have been active in recent years
obtaining software-related patents. See John T. Soma & B. F. Smith, Software Trends:
Who’s Getting How Many of What? 1978 to 1987, 71 J. Pat. & Trademark Off. Soc’y 415
app. at 428-32 (1989) (showing that hardware firms had obtained most of the software
patents).

Software developers have generally been more doubtful of the appropriateness of
patents for software innovations. See, e.g., Glen D. Self, Comments on Behalf of the
Research and Development Organization of EDS, in Response to Request for Comments
for the Advisory Commission of Patent Law Reform, 56 Fed. Reg. 22702-02 (1991) (on file
with the Columbia Law Review) and sources cited infra note 221.

219. See, e.g., In re Iwahashi, 888 F.2d 1370 (Fed. Cir. 1989). For an argument that
Twahashi cannot be squared with Bensor, see Samuelson, Benson Revisited, supra note 5, at
1102 n.294.

220. Iwahashi, 888 F.2d at 1874.

HeinOnline -- 94 Colum. L. Rev. 2362 1994

1994] MANIFESTO 2363

While some still oppose algorithm patents on the ground that they
interfere with the free use of mathematical ideas,??! the major battle-
ground over software-related patents today concerns the potential for
overprotection of program innovations arising from deficiencies in the
Patent and Trademark Office’s handling of software-related applica-
tions.222 As the 1966 Commission feared, the Patent and Trademark Of

221. See, e.g., Report of the Committee on Algorithms and the Law, Optima
(Mathematical Programming Society), June 1991, at 2, 4 [hercinafter Mathematical
Report] (“[Wle believe that the patenting of algorithms would have an extremely damaging
effect on our research and on our teaching, particularly at the graduate level, far
outweighing any imaginable commercial benefit.”). The Patent and Trademark Office
recently sponsored two hearings at which software developers voiced their concerns about
or opposition to the use of patents in regulating innovation and competition in the
software industry. See, e.g., Gregory Aharonian <srctran@world.std.com>, PTO Software
Patent Hearings in DG, Internet Pat. News Serv.,, Feb. 12, 1994, URL: http://
sunsite.unc.edu/patents/intropat.html (archived stories); United States Patent and
Trademark Office Public Hearing on Use of the Patent System to Protect Software-Related
Inventions: Before Bruce A. Lehman, Assistant Secretary of Commerce and Comm’r of
Patents and Trademarks, San Jose, Cal., Jan. 27, 1994 (statement of Jim Warren, Director,
Autodesk, Inc.) [hereinafter Patent Hearings]; see also Patent Hearings, supra, Jan. 26,
1994 (statement of Tom Lopez, President, Interactive Multimedia Ass’n). The Interactive
Media Association opposes patents pertaining to multimedia products because patents
would impede free expression and substantially increase development costs, especially the
cost of insurance against unwitting infringement of patents. It is interesting to observe that
although there is very little critical commentary about patents for software innovations in
the law review literature, there is a good deal of it in non-legal periodicals. See, e.g., Peter
Coffee, Soft Talk: Rulings Show Absurd State of Software Law, PC Wk., Apr. 18, 1994, at 58
(arguing against patents for software); Jonathan Erickson, Baby Don’t You Drive My Car,
Dr. Dobb’s J., Jan. 1991, at 96S; Michael J. Miller, Software Patents Must Go, PC Mag., Mar.
15, 1994, at 79 (discussing litigation issues); Dana J. Parker, Patently Ridiculous, CD-ROM
Prof., May 1994, at 161 (discussing “good” and “bad” standards); Evan 1. Schwartz &
Michele Galen, The Coming Showdown over Software Patents, Bus. Wk., May 13, 1991, at
104; Software Patents: Law of the Jungle, Economist, Aug. 18, 1990, at 59; Softwars,
Economist, Apr. 23, 1994, at 17; Patent Law: The Strange Case of Dr. Billings, Economist,
Oct. 16, 1993, at 82.

222. As the 1966 Report feared, the Patent and Trademark Office began issuing
patents in this field without an adequate repository of the art in the field (a deficit which is
far more serious today than it was in 1966), without adequately trained examiners, and
without an adequate classification system. After almost a decade of granting patents for
software-related innovations, it has still not resolved these problems. The administrative
difficulties are so severe that a recent report of the Office of Technology Assessment on
the state of software intellectual property law identified reform of the Patent and
Trademark Office’s practices as “extremely important.” Finding a Balance, supra note 2, at
24. See generally id. at 6-35 (discussing administrative problems with patenting software
innovations). The current Commissioner of Patents and Trademarks, Bruce Lehman, has
spoken of the Patent and Trademark Office administration of software-related patent
applications as an “indefensible mess.” Bob Metcalf, From the Ether: Washington Grinds
Down New Patent Chief, InfoWorld, May 9, 1994, at 62. The Patent and Trademark Office
has recently undertaken sua sponte to reexamine some softwarerelated patents that
generated almost universal outrage from the industry as wrongly issued. See, e.g., Mike
Landberg, Compton’s Newmedia Loses Controversial Patent, San Jose Mercury News, Mar.
26, 1994, at 12D.

HeinOnline -- 94 Colum. L. Rev. 2363 1994

2364 COLUMBIA LAW REVIEW [Vol. 94:2308

fice has seen a significant influx of applications, and has issued sharply
increasing numbers of patents.223

Although the Office is improving its practices,?2¢ its reforms cannot
solve the principal protection problem that this Article addresses. Be-
cause innovation in the software industry is typically incremental, not in-
ventive, the success of patent reform will inevitably withdraw most patent
protection from software and result in underprotection.?25

2.4 Reasons Why Action Is Needed

Several considerations motivate our call to consider a new framework
for protecting software innovations in the near term. First, as we have
argued above, there is a substantial source of value in programs that is
easily imitated for which existing law, properly construed, provides no
remedy.?26 As an information product, software has little or no lead time
deriving from mass production or distribution. As a result, innovators
may have little lead time left if second comers can quickly make function-
ally indistinguishable products even without reproducing program text.

Second, we have observed that the attempt to protect the valuable
know-how in software has led to cycles of under- and overprotection.
Those cycles are both empirically observable in the history of software
case law?27 and almost inevitable given the dual nature of software as a
technology and a writing, which confounds the basic assumptions of ex-
isting legal regimes.228

The status quo may seem comfortable, but it is unstable. Much of
what is valuable in software cannot be appropriately protected by existing

223. See Greg Aharonian, <srctran@world.std.com>, Software Patenting “Crisis”
Worsening, Internet Pat. News Serv. Apr. 18, 1994, URL:http://sunsite.unc.edu/patents/
intropathtml (archived stories) (estimating that 11,000 patents had issued from early
1970s to early 1990s, that 1146 software patents had issued in first quarter of 1994, and that
in 1994-95, 11,000 will issue). Aharonian has elsewhere estimated that IBM holds 12% of
all issued software patents; other hardware companies hold many of the rest. See Gregory
Aharonian, ACM Forum: Setting the Record Straight on Patents, Comm. ACM, Jan. 1993,
at 17, 17. This influx of patents may partly be due to concerns that copyright alone may
not provide extensive protection to software. See Mitch Betts, Vendors Seek Patents as
Copyright Suits Grow, Computerworld, Oct. 11, 1993, at 109.

224. The Patent and Trademark Office has undertaken to hire new examiners with
training in computer science and to develop a better classifications system for software. It
has also been working with the Software Patent Institute at the University of Michigan
which is building a prior art database for software. Yet, serious questions remain about its
capacity to recover from several decades of deficit in keeping current about the state of the
art in this field. If courts continue to construe the scope of copyright in programs
constrictively, the Patent and Trademark Office may experience an even greater influx of
patent applications for software-related innovations. This may make it difficult for the
office to implement all needed reforms.

225. See supra notes 135-136 and accompanying text.

226. See supra notes 175-189 and accompanying text.

227. See supra notes 194-220 and accompanying text.

228. See supra notes 190-192 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2364 1994

1994] MANIFESTO 2365

legal regimes, yet this very fact is what drives cycles of under- and overpro-
tection. Left unaddressed, these cycles will not simply die down. Indeed,
they are likely to grow worse as the industry matures.

The OTA has suggested that there may be a point at which it would
become preferable to develop a complementary or substitute legal re-
gime to protect computer program innovations because certain aspects of
programs simply cannot be successfully accommodated within existing
legal regimes. We concur: It would be far better to recognize the dual
nature of software and tailor a regime to protect it, than to attempt a
forcefit with existing legal regimes and risk distorting the principles on
which those regimes are founded.

3 Rationale for a Market-Oriented Approach to the Legal Protection
of Program Innovations

In the preceding Sections, we showed that existing legal regimes are
not well-suited to protecting software innovation. They either cannot
protect the principal source of value in programs—behavior—or cannot
protect the incremental innovation typical in the field. Trade secrecy
cannot protect what is not secret; copyright protects only text and text is
largely independent of behavior; and incremental innovation cannot
meet patent standards. Attempts to stretch the bounds of existing re-
gimes to protect the incremental innovation in software will result in
either too much or too little legal protection.

In response to these problems, we propose a two-part solution: (1) a
protection scheme organized around the sources of value in software,
namely, behavior and the applied know-how that produces it; and (2) a
protection scheme grounded in principles of market economics and mar-
ket preservation. In this Section, we describe what we mean by “market-
oriented” and argue for the appropriateness of our approach. In Section
4, we will discuss important characteristics of the software market to
which a market-oriented legal regime should be attentive. In Section 5,
we will discuss three factors that can be used to predict when market fail-
- ure is likely to occur as second comers appropriate innovations from a

preexisting program,

3.1 Genesis of a Market-Oriented Approach

We propose taking a market-oriented approach to protecting
software innovation. By this, we mean a legal regime that would not re-
strict appropriations of compiled know-how in programs any further than
is necessary to avoid market failure and restore the kind of healthy com-
petition that occurs when innovators enjoy sufficient natural lead time.22°
This approach follows naturally from our argument that incremental
technical innovation needs protection against trivial acquisitions of equiv-

229. See Reichman, Legal Hybrids, supra note 100. Of course, there may be other
market failures that no legal protection regime can rectify.

HeinOnline -- 94 Colum. L. Rev. 2365 1994

2366 COLUMBIA LAW REVIEW [Vol. 94:2308

alence that have market-destructive effects.220 Firms that can rapidly rep-
licate the innovative behavior of another firm’s product at much lower
development costs can supply a market substitute that will deny the inno-
vator an adequate opportunity to recoup its research and development
expenses and make sufficient profits to justify its initial investment in in-
novation.23! The law should, therefore, intervene only to the extent nec-
essary to avert the market failure that would result from this sort of appro-
priation.232 Several factors contribute to our view.

3.1.1 Incremental Innovation Has Generally Been Left to the Rigors
of Free Competition

In market economies, competition is the general rule to which pat-
ent and copyright are exceptions.23 That is, unless patent or copyright
law protects an innovation embodied in a publicly distributed product,
competitive imitation of it is not only lawful, but desirable from the stand-
point of consumer welfare.23¢ The public benefits from competitive imi-

230. For a more general discussion of the potential for market failure arising from
appropriations of information innovation, see Gordon, supra note 101, at 854-59; Wendy
J. Gordon, Property and Tort Responses to Failures in Markets for Intangibles 1-6 (July 16,
1994) (unpublished manuscript, on file with the Columbia Law Review). The second
article has been translated into German and is scheduled for publication as Wendy]J.
Gordon, Systemische und fallbezogene Losungsansitze fir Marktversagen bei
Immaterialgiitern (L. Haberfellnertrans.), in Okonomische Analyse des gewerblichen
Rechtsschutzes 327-70 (Claus Ott & Hans-Bernd Schifer eds., forthcoming 1994).

231. Because development [of information products such as software] is so costly,

the difference in price between what the free rider can charge and what the

developer must charge to recoup his costs is substantial. This gap in price will

tend to drive consumers to purchase the goods of the free rider. To make
matters worse, many of these products change rapidly Accordingly,
developers cannot bring their selling prices closer to those of their competitors by
extending the period during which they can recoup their costs.
Dreyfuss, supra note 6, at 901. See also Gordon, supra note 101, at 859-68 (discussing
Gordon’s model of the intellectual property prisoners’ dilemma).

232. Professor Menell has observed that “[t]The dilemma in designing legal protection
for application program code is finding the correct balance between providing
programmers with sufficient lead time to exploit their programs in the market before
imitators appear, and not inhibiting the rapid sequential process driving the technological
advancement of application programming.” Menell, supra note 1, at 1080.

233. Until very recently, United States law regarded patent and copyright as the only
exceptions to the general rule of competition. Other countries, however, have been
experimenting with special protection regimes for specific kinds of appropriation. See
Reichman, Legal Hybrids, supra note 100, at 2453-2500; Jerome H. Reichman, Legal
Hybrids Between the Patent and Copyright Paradigms, in Information Law Towards the
21st Century 325 (William. F. Korthab Altes et al. eds., 1992). Patent and copyright law are
widely seen as legal devices that correct for market failures that would occur if all
innovation revealed in publicly distributed products could be freely appropriated. See,
e.g., Gordon, supra note 101, at 854-55.

234. See, e.g., Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 142
(1989) (holding Florida statute protecting boat design preempted by federal law); Sears,
Roebuck & Co. v. Stiffel Co., 376 U.S. 225, 231-33 (1964) (holding Illinois unfair
competition law protecting unpatentable innovations preempted by federal law).

HeinOnline -- 94 Colum. L. Rev. 2366 1994

1994] MANIFESTO 2367

tation because it results in the production of more goods at lower prices
as more efficient producers enter the market.235

Although incremental technical innovation has generally been left to
the rigors of free competition, the rationale for doing so has been, appar-
ently, the assumption that incremental innovators would have some natu-
ral lead time after introducing an innovative product to the market, dur-
ing which they could charge monopoly prices. 236 Such lead time arose,
in part, because manufacturers of industrial products embodying incre-
mental innovations were able to keep secret much of the know-how re-
quired to make their products.237 Allowing third parties to reverse engi-
neer and appropriate incremental innovation also substantially
contributed to the cumulative innovation process because those who re-
verse engineer often introduce improvements as they reimplement an-
other’s innovation or learn how to produce the product more effi-
ciently.238 Even in the face of such competition, firms with lead time
generally receive enough return on their investment to provide adequate
incentives for incremental innovation.239

In contrast to this traditional scenario, information products, such as
computer software, bear so much of the technical know-how required to
make them on or near the surface of the product that natural lead time
for this kind of industrial product may not suffice.240 A new exception to

235. See, e.g, Stanley M. Besen & Leo J. Raskind, An Introduction to the Law and
Economics of Intellectual Property, 5 J. Econ. Persp. 3, 5~6 (1991).

236. See, e.g., Reichman, Legal Hybrids, supra note 100, at 2506-11; see also Hanns
Ullrich, Standards of Patentability for European Inventions 106 (Friedrich-Karl Beier et al.
eds., 1977) (arguing that innovator has natural lead time as first to establish manufacturing
and distribution); Ralph S. Brown, Design Protection: An Overview, 3¢ UCLA L. Rev.
1341, 1388 (1987) (arguing that innovators have head start which confers market
advantage).

237. See Reichman, Legal Hybrids, supra note 100, at 2514. This lead time occurred
because of the time it would take others to recognize the market value of the innovation,
reverse engineer it, and retool to imitate it.

238. See Friedman et al, supra note 118, at 70; see also D.V. Kerns, Additional
Thoughts on Reverse Engineering (Apr. 23, 1994) (unpublished comments, on file with
the Columbia Law Review). Kerns observes that

[reverse engineering] is an impetus for higher levels of innovation [It] forces

an aggressive and proactive understanding of the original innovators [sic]

technology [I]n the process of understanding the way in which the innovator

accomplished specific tasks, the second-comer’s expertise and background can be
applied to accomplish the same task but with a fresh perspective. This innovation
occurs because the second-comer has the advantage of a working product with
demonstrated behavior characteristics along with the required specifications.

I maintain that such innovation would not necessarily occur if the original
innovator merely licensed the new technology to the imitator.

239, Professor Reichman has shown that a number of legal hybrid regimes have been
created to deal with instances in which natural lead time, in fact, did not suffice to provide
the proper incentives environment. See Reichman, Legal Hybrids, supra note 100, at
2453-2500.

240. See Dreyfuss, supra note 6, at 903-04; Reichman, Applied Know-How, supra note
5, at 659-60.

HeinOnline -- 94 Colum. L. Rev. 2367 1994

2368 COLUMBIA LAW REVIEW [Vol. 94:2308

the rule of free competition is needed for the applied know-how embod-
ied in these products. Such an exception, like copyright and patent
before it, should be tailored to insure that it will not impede competition
any more than is necessary to correct the market failure it addresses.24!

3.1.2 The Reuse of Publicly Accessible Technical Know-How Is
Socially Beneficial

The new exception to the general rule of free competition for which
we argue would regulate the ability of second comers to reuse not only
incremental innovation, but also technical know-how embodied in pub-
licly distributed information products. Even if there are good reasons to
regulate some commercial appropriations of such know-how, we recog-
nize that there is a strong societal interest in permitting the use of pub-
licly accessible technical information that is unprotected by patent or
copyright law. The exception must therefore extend no farther than is
necessary to address market failure and preserve healthy competition.

3.1.3 The Market Has Generally Produced Competition and
Innovation in the Software Industry

The history of the computer software industry demonstrates that a
high degree of innovation and market growth can occur in a relatively
minimalist legal environment. The industry grew from a trivial sideline
to a major source of economic strength in a legal environment in which
software developers regarded copyright as providing protection for code
only and did not expect patent protection.?4?2 Most of the innovation in
the software industry has been cumulative and incremental and many in-
cremental software innovators have found substantial rewards in the
market.243

241. The economists who advised CONTU took a static view of the nature of
innovation in the software industry and focused their study on the incentives environment
that would promote investment in stand-alone programs. See Yale Braunstein et al., Nat’l
Technical Info. Serv., Economics of Property Rights as Applied to Computer Software and
Data Bases (1977), reprinted in 4 Copyright, Congress and Technology 1, 7-21 (Nicholas
Henry ed., 1980). More recently, economists have become concerned about the dynamic
character of technical innovation. They have recognized that a somewhat different
incentives environment is needed to foster cumulative innovation. See generally Robert P.
Merges & Richard R. Nelson, On Complex Economics of Patent Scope, 90 Colum. L. Rev.
839 (1990) (arguing that scope of patents should favor competition for innovation, rather
than pioneer inventor); Suzanne Scotchmer, Standing on the Shoulders of Giants:
Cumulative Research and the Patent Law, 5 J. Econ. Persp. 29 (1991) (investigating patent
protection incentives for cumulative research). For an analysis of the cumulative
innovation problems presented by computer software, see Menell, supra note 1, at
1079-83; Menell, supra note 6, at 1336-39; see also Finding a Balance, supra note 2, at
21-22, 187-94 (discussing ways in which economic theory and software industry have
changed since CONTU’s work).

242. See Samuelson, Benson Revisited, supra note 5, at 1133-40,

243. For example, Lotus 1-2-3 incrementally improved upon the basic concept of a
spreadsheet program introduced to the market by VisiCalc, and was a bigger economic

HeinOnline -- 94 Colum. L. Rev. 2368 1994

1994] MANIFESTO 2369

However, factors that provide sufficient protection and lead time in
the early days of an industry may not suffice as the industry matures.2¢*
In those early days there are fewer barriers to entry: no brand names, no
entrenched market leaders, and (in software) no installed base of existing
software and no significant population of trained users. With barriers to
entry lower, innovation is freer to come to market. As the market ma-
tures, however, and barriers begin to emerge, innovators will find that a
more potent innovation is required to capture market share: users exper-
ienced with existing software must be motivated to incur the cost of
switching. More potent innovation, in turn, will require longer design
periods and development, exacerbating the problem of lead time ero-
sion.245 As Section 4 will demonstrate, the software market is in a differ-
ent stage of maturity than it was when minimalist protection was the
norm, and existing legal regimes may leave some program innovations
vulnerable to market-destructive appropriations.

3.2 How a Market-Oriented Approach Might Differ from a Traditional
Intellectual Property Approach

The principal mechanism of traditional intellectual property regimes
is the grant of a set of exclusive property rights to qualifying creators for a
set period of time.246 Patent law, for example, provides qualifying inven-
tors with seventeen years of rights to exclude others from making, using,
or selling their invention.?4? Copyright law offers authors exclusive rights
to reproduce their works in copies, to distribute copies, to prepare deriva-

success than VisiCalc. See Christopher Barr, From VisiCalc to 1-2-3: How Much Did 1-2-3
Really Borrow from Its Predecessor, VisiCalc?, PC Mag., May 26, 1987, at 169, 169.

244. Tt may very well be that when any industry is young, capability market power

on its own is able to provide a healthy environment for small firms and for the

creativity of individuals. It certainly cannot do so later on. An indispensable

characteristic of such an environment is that the stakes for entry are low, meaning
that new firms can come into being easily, and that individuals have little
difficulty in moving from employment to start up their own firms.
William Kingston, Response in Direct Protection, supra note 67, at 277, 284-85
[hereinafter Kingston, Response].

245, See id. at 296.

246. The distinction between “property rules” and “liability rules” is well known in
American law. Property rules typically permit owners to exclude others from interfering
with their interests; liability rules permit individuals to be compensated for harm arising
from unauthorized interference with their legitimate interests but do not confer power to
stop the interference in the first place. See Guido Calabresi & A. Douglas Melamed,
Property Rules, Liability Rules, and Inalienability: One View of the Cathedral, 85 Harv. L.
Rev. 1089 (1972). Traditional intellectual property regimes fit the property rule model
more than the liability rule model because they rely principally on the grant of one set of
exclusive rights to all qualifying innovations for one set period of time.

247, See 35 U.S.C. § 154 (1988). In most other nations, patents last for 20 years. See
Harold C. Wegner, Patent Harmonization 290 (1993).

HeinOnline -- 94 Colum. L. Rev. 2369 1994

2370 COLUMBIA LAW REVIEW [Vol. 94:2308

tive works, and to publicly perform or display the works for their lives plus
fifty years.?48

Patent and copyright law occasionally deviate from the exclusive
rights model by providing some circumstances in which liability rules ap-
ply for certain classes of works or uses.249 Moreover, courts in traditional
intellectual property disputes sometimes withhold injunctive relief
against an infringer even when no special compulsory license provision
applies, thereby effectively applying a liability rule to the dispute.25°

A market-oriented approach for the protection of incremental inno-
vation embodied in computer programs might employ “blocking periods”
during which, as in exclusive rights regimes, certain uses of an innovation

248. See 17 U.S.C. §§ 106, 302 (1988). Some of copyright law’s exclusive rights are
available only to certain classes of works. See 17 U.S.C. §§ 106(4), (5). Companies that
qualify as authors have 75 years of exclusive rights in their works that run from the work’s
first publication. See 17 U.S.C. § 302(c) (1988).

249. See, e.g., 17 US.C. § 115 (1988); 28 U.S.C.A. § 1498 (West 1994); 35 U.S.C.
§ 183 (1988); see also Mark W. Lauroesch, General Compulsory Patent Licensing in the
United States: Good in Theory, but Not Necessarily in Practice, 6 Santa Clara Computer &
High Tech. LJ. 41, 41 (1990); Paul S. Rosenlund, Compulsory Licensing of Musical
Compositions for Phonorecords Under the Copyright Act of 1976, 30 Hastings L.J. 683,
683, 693~701 (1979). A number of countries have compulsory license provisions that,
although rarely invoked, seem to induce voluntary licenses. See S. Delvalle Goldsmith,
Patent Protection for United States Inventions in the Principal European Countries—
Existing Systems, 6 B.C. Indus. & Com. L. Rev. 533, 535 (1965); Tetsu Tanabe, Compulsory
Licensing in Japanese Patent Law, 8 Int'l Rev. Indus. Prop. & Copyright L, 42, 43, 45
(1977) (describing Japanese patent law granting compulsory license only after applicant’s
good faith effort to obtain voluntary license). In the United States the mechanical
recording compulsory license seems to induce purchase of voluntary licenses from the
Harry Fox Agency (known as “Harry Fox licenses”). See Rosenlund, supra, at 688-89.
Even the GATT/TRIPs Agreement permits limited exceptions to the general rule of
exclusive rights. See Reichman, GATT/TRIPS, supra note 146, at 204-10.

250. See Campbell v. Acuff-Rose Music, Inc., 114 S. Ct. 1164, 1171 n.10 (1994)
(suggesting that courts consider withholding injunctive relief in close cases in which
defendant has exceeded bounds of fair use); Rebecca S. Eisenberg, Patents and the
Progress of Science: Exclusive Rights and Experimental Use, 56 U. Chi. L. Rev. 1017, 1077
n.230 (1989) (citing examples where relief was denied because infringement furthered
public interest). The United States government has sometimes pressured firms into
licensing technology that might have gone unlicensed without government intervention.
“See Merges & Nelson, supra note 241, at 890-91 (discussing government pressure that
brought about automatic cross-licensing in aircraft manufacturing industry).

The classic statement of circumstances in which it is economically efficient to impose a
liability rather than a property rule is Calabresi & Melamed, supra note 246. These authors
assert that the most common reason for employing a liability rule rather than a property
rule is that “market valuation of the entitlement is deemed inefficient, that is, it is either
unavailable or too expensive compared to a collective valuation.,” Id. at 1110. High
transaction costs may impede licensing even when licensing might be socially desirable.
See Merges & Nelson, supra note 241, at 874 (“A substantial literature documents the steep
transaction costs of technology licensing, and there is indirect evidence that these costs
increase when major innovations are transferred.”) (footnotes omitted); id. at 874
nn.146-47 (citing sources). We suggest that high transaction costs for many-to-many
licenses of software innovations may justify the use of a liability rule to protect incremental
innovation embodied in programs.

HeinOnline -- 94 Colum. L. Rev. 2370 1994

1994] MANIFESTO 2371

would be prohibited. However, ‘'a market-oriented legal regime could
more narrowly tailor blocking periods so that they provide only the de-
gree of artificial lead time that software developers need to avoid market
failure.251 Also, a market-oriented legal regime could use blocking peri-
ods more selectively than traditional exclusive rights laws have done. It
could, for example, provide a longer blocking period against reuse of an
innovation by software developers operating in the same market than
against reuse by developers who sought to employ the same innovation in
a remote market segment.252 It could also exempt appropriations of pro-
gram innovations having no effect on the market (e.g., some research
uses).253

A market-oriented legal regime could also employ other mechanisms
to achieve its efficiency-enhancing aims, such as requiring users to ac-
quire automatically granted, royalty-bearing licenses for certain types of
uses.25¢ That is, it could develop liability rules that would, for some pe-
riod of time, compensate developers when second comers used their in-
novations.25> These liability rules could, for example, take into account
the market segment in which a second comer operated, the nature of the
appropriated entity, and the degree of similarity between the two
products.256

4 The Nature of the Software Market and Its Consequences

If we are to have a market-oriented regime, we must take account of
several characteristics of software as a product and of the software market.
More specifically, we must be familiar enough with the market to be able
to identify when a market failure might occur and what aspects of the
healthy market must be maintained under any legal regime. This Section
will discuss some respects in which software has evolved as a product;
changes that have occurred in the manner in which software is distrib-
uted, licensed, and otherwise protected; the manner in which competi-
tion has been affected by changes in the nature of software products and

251. See Reichman, Legal Hybrids, supra note 100, at 2547-48.

252. See infra notes 435-439 and accompanying text.

253. For a general discussion of research uses of innovations in a field in which basic
and applied science are largely inseparable, see Eisenberg, supra note 250, at 1074-78
(distinguishing among different types of research uses of patented innovations; favoring
exemptions for some and liability rules for others).

254. See infra notes 415416 and accompanying text.

255. See Reichman, Legal Hybrids, supra note 100, at 2548-51. We note that
Congress has sometimes imposed a liability rule for reuse of industrial compilations of
applied know-how concerning unpatented technical innovations. See Federal Insecticide,
Fungicide, & Rodenticide Act (FIFRA) § 3, 7 U.S.C. § 136a (1988) (providing a right of
reasonable compensation for a second comer’s use of a first comer’s scientific data
concerning the safety of a particular pesticide). The U.S. Supreme Court upheld the
constitutionality of this provision in Ruckelshaus v. Monsanto Co., 467 U.S. 986, 1019-20
(1984).

256. See infra notes 435-444 and accompanying text for a discussion of these factors.

HeinOnline -- 94 Colum. L. Rev. 2371 1994

2372 COLUMBIA LAW REVIEW [Vol. 94:2308

distribution systems; and the high degree of innovation in the industry
which, in part, results from development of systems that interoperate.

4.1 Evolution of Software as a Product

In the beginning, hardware was the predominant source of value in
the computer industry. Software was often “bundled” with hardware
sales, in effect, given away with the hardware.25? Hardware companies
had incentives to provide business applications to their customers be-
cause customers valued computers because of what they could do with
them. Academic researchers created much of the early innovative
software, particularly operating systems and utility programs.258 Software
not produced by hardware companies tended to be custom-developed
under individual development contracts. There was, at this time, almost
no distinct software industry.

This changed radically with the advent of personal computers, which
ushered in the era of companies devoted solely to producing and selling
individual software packages. Hardware and software markets were par-
ticularly synergistic during this era: the availability of new software prod-
ucts, such as spreadsheet programs, increased the utility of and hence
demand for computers, while the increasing number of personal com-
puters in use rapidly expanded the size of the software market.259

The market for major applications (e.g., spreadsheets, word proces-
sors, personal finance programs, and the like) dominated the first decade
of the personal computer era. In recent years, these markets have consol-
idated, as mergers and failures winnowed out former competitors. In-
creasing effort and innovation have been going into developing products
for niche markets (such as computer-aided design or graphic design
tools).

Over the years both the view of software as a product and the charac-
ter of the product have thus evolved considerably, from business applica-
tions supplied with a mainframe, to applications intended for the end-
user and aimed at a mass market, to the more narrowly aimed vertical
markets today.

257. See, e.g., Ferguson & Morris, supra note 80, at 7.

258. Examples include time-sharing, created at MIT and Dartmouth, the Multics
operating system (MIT), and the earliest computer networks such as the ARPANET,

259. See supra note 50 concerning VisiCalc as the first application that provided those
who were not computer hobbyists with a business justification for purchasing a computer.
Lotus 1-2-3, in turn, became the “killer application” that made the PG, in the same way that
VisiCalc had made the Apple II and that Wordstar made CP/M machines. See Stephen
Manes & Paul Andrews, Gates: How Microsoft’s Mogul Reinvented an Industry—And
Made Himself the Richest Man in America 218 (1993).

HeinOnline -- 94 Colum. L. Rev. 2372 1994

1994] MANIFESTO 2373

4.2 Evolution of Distribution, Licensing, and Legal Protection
Practices

A corresponding evolution occurred in distribution mechanisms, li-
censing practices, and means of protection. Initially, software was deliv-
ered physically with a mainframe machine during the installation and ac-
ceptance process. Given the high cost and relative infrequency of the
transactions involved in buying a mainframe, traditional contract and
trade secrecy law provided sufficient protection for innovation. In these
early days, before time sharing or networks, there was also no ambiguity
in licensing: the software came (and stayed) with the physical machine,
which was in turn accessible to only one user in one location.

With the advent of mass-marketed, end-user software, new distribu-
tion channels developed, including mail order and retail store sales.
Given the volume involved, it became pragmatically impossible to use
traditional contract law as a means of licensing or enforcing rights. The
so-called shrink-wrap licenses26? attempted to combine a contractual
mechanism with mass-market distribution, and their questionable legal
status was the predictable result.26! This massive growth in distribution
also forced to the forefront the issue of copyright protection for software,
because copyright is well-suited to protect information products that are
publicly distributed to a mass market.262

But technology soon stretched the traditional copyright model.
Steady reductions in hardware costs over the years made personal com-
puters ubiquitous in almost any technologically advanced organization.
As a result, large companies often have hundreds or thousands of com-
puters. These concentrations of computers, along with the development
of networks that link some or all of these machines together, created a
new set of challenges for software protection and licensing. New licens-
ing arrangements have arisen, some keyed to a specific number of multi-
ple users, others to a specific number of concurrent multiple users, still
others to a site (unlimited number of copies at a single site). Others
allow unlimited internal copying followed by an annual audit.263

260. See supra note 26 and accompanying text.

261. Early efforts to protect software technologically with “copy protection” programs
failed in the marketplace because they not only made mass copying impossible, but also
did not allow consumers to make back-up copies to protect their ability to use a program.
Consumers preferred unprotected software and could, in any case, write or obtain
programs to defeat the copy protection programs with relative ease. See, e.g., Vatit Corp.
v. Quaid Software Ltd., 847 F.2d 255 (5th Cir. 1988). In place of copy protection, the
industry has undertaken social efforts (e.g., advertising campaigns) to inform the public
about copyright law, and legal efforts (e.g., Software Publishers Association (SPA) “audits”
of suspected infringers) to enforce compliance. See Francine Knowles, Business Battles
Software Piracy, Chi. Sun-Times, Oct. 12, 1993, at 51 (discussing efforts of Software
Publishers Association).

262. See CONTU Report, supra note 17, at 19.

263. See generally 2 LJ. Kutten, Computer Software: Protection/Liability/Law/
Forms 8-1 (1994) (discussing licensing arrangements for software). At least one major

HeinOnline -- 94 Colum. L. Rev. 2373 1994

2374 COLUMBIA LAW REVIEW [Vol. 94:2308

A foreseeable development is network distribution of software.
Given the digital character of software and the ability to similarly digitize
its documentation (whether text, pictures, video, or sound), there is, in
principle, no reason to visit a software store or use the mail to obtain it.
Buyers could try out, order, and receive software and documentation over
networks such as the Internet.26¢ This may mean a vastly expanded mar-
ket reach for both vendors and consumers.

4.3 Evolution of Competition

The nature of competition in the software market changes rapidly,
with no clear outcome as yet. Initially, there was little or no competition.
Early entrants like VisiCalc, 1-2-3, and WordPerfect had the field almost
to themselves; the biggest challenge was often simply to grow fast enough
to meet the demand.

As competitors emerged, a primary basis for competition became
functionality: what the program could do. Advertisements and even pro-
fessional evaluations in the trade press typically offered long lists of capa-
bilities, catering to most consumers’ desire for the largest number of fea-
tures per dollar spent.

As competition has intensified, the market has changed. Price wars
have occurred. The increasing commoditization of familiar applications
has made customer service capabilities increasingly important.26> Even
so, the picture is still unclear: opinions differ as to the relative impor-
tance of features and customer service.266

Although the cost of packaged software has generally fallen, measur-
ing the true cost of acquiring software requires taking into account the
cost of using a new product. An employee earning $40,000 a year costs a
company approximately fifty dollars per hour. A typical mass-market
software package costs between twenty and five hundred dollars. Hence
an employee who has to spend more than two hours installing and learn-
ing to use a one-hundred-dollar program has already doubled the effec-

innovative licensing arrangement was motivated by the customer’s observation that “ ‘the
current copyright rules are untenable in a corporate setting.” " Rob Kelly, 1-2-3 Skiddoo,
Information Wk., July 27, 1992, at 53 (quoting Sheldon Laube of Price Waterhouse). In
describing a new licensing arrangement with Borland International, the customer, a
businessman, observed: “ ‘The whole industry still was based on an individual going out
and buying a shrink-wrapped package of software We wanted the flexibility to copy
the guy next door’s software’ Id.

264. See, e.g.,, Martin LaMonica, IBM To Deliver Its Software Electronically,
InfoWorld, Sept. 5, 1994, at 43.

265. See Massachusetts Computer Software Council, Inc., Software Industry 1993
Business Practices Survey 10-19 (1993) (interview with software company CEOs)
[hereinafter Business Practices].

266. See id.

HeinOnline -- 94 Colum. L. Rev. 2374 1994

1994] MANIFESTO 2375

tive cost of the program.267 Anyone who has attempted to install and
learn to use a new software package knows that two hours is often only
the beginning.268

Thus, there is considerable value in having users familiar with one’s
software. There is sufficient value, in fact, that more than one software
company attempting to enter a new market niche has done so by giving
away its software in an attempt to lure customers.26 Any new product
that attempts to displace a competitor will, conversely, find considerable
inertia in the marketplace; users are loathe to invest the time necessary to
change. This base of trained users in turn reinforces the need for inter-
operability: new competitors must be able to handle data in the forms
produced by their competitors.

With the changing nature of competition has come changes in
sources of profit in the software marketplace. It is no longer true that the
only source of profit is sale of the software itself. One company selling
personal financial software, for example, perceives itself to be as much in
the financial services business as in the software business. It prices its
software very inexpensively to attract customers in what it sees as an un-
derpenetrated market, with its profits coming, in significant part, from
the auxiliary financial services such as check printing and bill paying.27°
We expect additional examples of this phenomenon. In other cases, the
initial software sale provides no profit; the goal is to train customers on
the current version of the vendor’s program so that they will purchase
successive versions in the future.27!

Consumers are also becoming less tolerant of stand-alone, idiosyn-
cratic software. Hence, the market is increasingly driven by the need for
interoperability, in several senses: Software must operate on a variety of
hardware platforms, across networks, and most of all, programs must
work together. This latter point is exemplified by the popularity of

267. See Manes & Andrews, supra note 259, at 394 (citing Microsoft president as
estimating cost of training and support for software as about twice that of purchasing the
software).

268. This is one place in which network externalities arise in the software context.
Strong intellectual property rights may impede a socially desirable degree of
standardization. See Menell, supra note 6, at 1341-45; Joseph Farrell, Standardization and
Intellectual Property, 30 Jurimetrics J. 35, 36-38, 45-46 (1989) (discussing network
effects).

269. For example, Computer Associates, the second largest software company, gave
away more than one million copies of its personal finance program “Simply Money” in two
months, and four hundred thousand copies of its “Simply Tax” program in three months
for this reason. Telephone Interview between Randall Davis and Robert Gordon of
Computer Associates (Mar. 17, 1994). See generally HJ. Cummins, Computer Associates
Targets AtHome PG User, Newsday (Nassau & Suffolk ed.), Aug. 26, 1994, at A61, available
in Westlaw, Newsday database (discussing Computer Associates’ giveaway strategy).

270. Telephone Interview between Randall Davis and William Lane, Chief Financial
Officer, Intuit, Inc. (July 29, 1994). Intuit developed the Quicken software product.

271. This accounts for Computer Associates’ strategy with respect to giveaways of the
two programs discussed supra note 269.

HeinOnline -- 94 Colum. L. Rev. 2375 1994

2376 COLUMBIA LAW REVIEW [Vol. 94:2308

software “suites” containing word processors, spreadsheets, electronic
mail handlers, and presentation graphics, all of which work together
smoothly.

Additional evidence of the significance of interoperability is pro-
vided by the remarkable number of instances in which otherwise dogged
competitors have come to recognize that their markets will be enhanced
if they cooperate to develop common standards that provide interoper-
ability.?72 Interoperability applies to data as well. Developers of commer-
cial word processors devote significant amounts of code to ensuring that
their products can read files produced by their competitors.

4.4 Character of the Industry

The industry is currently characterized by a rapid rate of innovation.
New software products have been appearing recently at the rate of more
than two per day, a rate that has been increasing over the past few
years.27® As we noted above, however, innovation in the software market
is primarily incremental. Invention in the formal sense of the term is
rare.274

The major market is in widespread distribution of packaged software
for the personal computer: over the past several years software compa-
nies have reported that a consistent seventy percent of their revenue has
been related to personal computers, with the remaining thirty percent
divided up among workstations, minicomputers, and mainframes.2?5
Where the early years of the computer era were marked by individual
sales of software packages costing tens or hundreds of thousands of dol-
lars, the current era is one of mass-merchandised packages costing tens to
hundreds of dollars.

The market is also maturing and barriers to entry are developing.
One sign of maturation is the growing importance of a base of trained
users. This in itself is becoming a barrier to new entry to major applica-
tion product domains. Additional barriers come from the relative stabil-
ity of major products and the emergence of a few big players in the major
product categories. There has been significant consolidation in these
product categories and there are now a handful of players where once
there were dozens.

One part of the market—operating systems—is beginning to have
increasing influence. Operating systems are the foundational layer on

272. This trend is reflected in the formation of “open systems” associations. See
Andrew Pollack, Computer ‘Gangs’ Stake Out Turf, N.Y. Times, Dec. 13, 1988, at D1, D15
(describing members of Open Software Foundation (including IBM, Digital, and HP), as
well as X/Open and Unix International).

273. See Business Practices, supra note 265, at 89 (reporting that 929 software
companies surveyed brought 736 new products to market in 1991, and 853 in 1992).

274. See supra notes 67-74 and accompanying text.

275. See Business Practices, supra note 265, at “Detailed Results” question 54
(unnumbered page).

HeinOnline -- 94 Colum. L. Rev. 2376 1994

1994] MANIFESTO 2877

which applications programs must run, and with which they must be com-
patible. That foundation is beginning to absorb and provide ever more
functionality.2’6 In recent years, for example, the widespread utility of
and acceptance of graphical user interfaces led to their migration into
operating systems, such as Microsoft’s Windows.

Notwithstanding the dominance of a few firms in major software
product markets, the market for software more generally is characterized
by a large number of small companies. In a 1993 survey of a thousand
software companies, almost half (forty-six percent) reported annual reve-
nues of one million dollars or less, and fully seventy-seven percent re-
ported revenues of five million dollars or less. Of those thousand compa-
nies, more than half—fiftyseven percent—had fifteen or fewer
employees; seventy-one percent had thirty or fewer employees.277

Finally, the software industry is characterized by a phenomenon that
may be unique among large-scale commercial marketplaces, for it in-
cludes a large body of public domain software and “shareware.”2?8 This
software was written by people in many countries and shared via the In-
ternet and electronic bulletin boards around the world, and ranges in
size and functionality from small to quite large-scale programs.2’® The
code is typically made available in one of two ways: either by putting it
into the public domain, without restriction as to use, or by distributing it
as shareware. Shareware is software available for the taking from bulletin
boards, sometimes with the request for a modest registration fee in the
range of five to twenty-five dollars. Payment is on the honor system. Re-
gistration may be attractive because it offers benefits such as periodic
code updates, a printed manual, or at times, a more fully functional ver-
sion of the program, but the basic spirit is of sharing interesting, enjoya-
ble, or useful code, primarily for the sake of enjoying good craftsmanship
rather than profit. Shareware is, not surprisingly, often created by indi-
viduals, but larger efforts also exist, in which packages grow quite large
and sophisticated over the years as a consequence of work by many
people.

276. See, e.g., John Markoff, Microsoft’s Future Barely Limited, N.Y. Times, July 18,
1994, at DI1.

277. See Business Practices, supra note 265, at 87 (employee data); id. at “Detailed
Results” question 53 (unnumbered page) (revenue figures).

278. See Craig T. Turkington, A Comparison of Shareware and Other Software
Licensing: Role of the New Copyright Office Shareware Registry, 1 U. Balt. Intell. Prop.
LJ. 76 (1992).

279. As of November 18, 1994, one large electronic bulletin board called SimTel
contained 11,627 programs spread across 200 different categories. On average, a dozen
new files are added every day, some of which are upgrades to existing files, and some of
which are new additions. Electronic Mail from Jeff Marraccini <jeff@oak.oakland.edu>,
System Administrator of the OAK Software Repository, oak.oakland.edu, primary mirror
site for SimTel, to David B. Oshinsky, staff, Columbia Law Review (Nov. 20, 1994) (on file
with the Columbia Law Review).

HeinOnline -- 94 Colum. L. Rev. 2377 1994

2378 COLUMBIA LAW REVIEW [Vol. 94:2308

4.5 Implications

The rapid innovation and strong competition is evidence that the
software market is vibrant and successful. Any software protection
scheme ought to take account of this, and attempt to do little more than
repair market failure where and when it does occur.

The desire for interoperability means that there are natural incen-
tives for many companies to share information (and for some, to monop-
olize such information28%) and that consumers have an interest in seeing
that information shared. Any legal regime should both take advantage of
the existing incentive and facilitate interoperation.

The large number of small companies illustrates that the initial crea-
tion of a new software product is relatively low in capital expense and
affirms the folk wisdom that innovation in this industry is often accom-
plished by small teams. This, in turn, suggests that any legal regime
should be wary of its impact on small companies, with their limited
resources.

Finally, the maturation of the market and its barriers to entry suggest
that any legal regime must be able to adapt to market change. The needs
early on will clearly differ from those that emerge as a market matures,
and a regime that cannot adapt risks becoming irrelevant at best, an im-
pediment at worst.

5 Primary Dimensions of a Market-Based Legal Regime for the
Protection of Software Innovations

5.1 Overview of the Primary Dimensions

A market-oriented legal regime for protection of the applied know-
how arising from behavior needs criteria by which to assess when market
failure is likely to occur. We recommend consideration of three primary
factors as the basis for making such an assessment: (1) the nature and
size of the software entity or component that has been imitated; (2) the
means by which a second comer obtains access to such an entity and the
degree of dependence (or independence) of a second comer’s creation;
and (3) the degree of similarity between the products and markets of the
original and second comers.28!

Market failure is likely if the quantum and significance of the entity
taken is substantial, the second comer’s development effort is rapid, easy,
and highly dependent on the first comer’s product, the degree of similar-
ity in the resulting products approaches identicality, and the second
comer’s market is proximate to that in which the first comer operates.

280. Sega and Nintendo, for instance, have attempted to protect the information
necessary to interface with their videogame consoles. See Sega Enters. v. Accolade, Inc.,
977 F.2d 1510, 1514 (9th Cir. 1992); Atari Games Corp. v. Nintendo of America, Inc., 975
F.2d 832, 836 (Fed. Cir. 1992).

281. See Gordon, supra note 101, at 258-65 (discussing proposed tort of
malcompetitive copying that resembles, to some degree, our approach).

HeinOnline -- 94 Colum. L. Rev. 2378 1994

1994] MANIFESTO 2379

'The converse is also true: the smaller the taking, the less dependent the
creation, the less similar the results, and the less proximate the markets,
the less likely it is that a second comer’s borrowing will undermine the
first comer’s incentives to invest in innovation.

This Section discusses these considerations and the potential for
market-destructive effects from certain conduct. It establishes a basis
upon which to construct a new legal regime for the protection of pro-
gram innovations, although more empirical investigation and much de-
bate will be needed to develop specific proposals for implementation of a
new legal regime.

5.1.1 Overview of the Entity Dimension

We distinguish among five software entities, ordered below from
largest to smallest in relation to the software product as a whole:

. Program code (as a behavioral entity)

Program compilation as a whole (more abstract representa-
tion of behavior or design for producing behavior)

. Subcompilations

. Algorithms

. Features

CUMN 00 PO

The degree of legal protection required to avoid market failure cor-
responds to the extensiveness of the taking in relation to the program as
a whole. Copying code is problematic because it allows rapid appropria-
tion of the entire software product with no expenditure of effort. Copy-
ing code is highly destructive of the developer’s opportunity to benefit
from its contribution to the market.

Copying of program behavior or the industrial design for bringing
about behavior is also problematic because a second comer can produce
a market substitute with relatively trivial effort. The appropriation of this
sort of program compilation is, nonetheless, less likely to have market-
destructive effects than code copying because it requires some expendi-
ture of effort, even though far less than developing the program in the
first place.

Copying of a program subcompilation, such as a portion of a pro-
gram’s behavior, is generally less problematic than copying the program
compilation as a whole because a second comer that copies only some of
a program’s behavior may not, on that basis alone, offer a market substi-
tute without expending considerable effort to design other aspects of its
program. Still, subcompilations, too, may be in need of some legal pro-
tection insofar as innovators do not, in fact, have enough opportunity to
earn a return that justifies investment in innovation. Although typically
perceived as individual components of programs, algorithms and features
may also be in need of some protection, although this is more controver-
sial. Still, it is generally true that a competitor’s appropriation of a fea-
ture is less likely to have a destructive impact on the market for the

HeinOnline -- 94 Colum. L. Rev. 2379 1994

2380 COLUMBIA LAW REVIEW [Vol. 94:2308

software than if the second comer appropriated code or the program
compilation as a whole.

5.1.2 Overview of the Means of Access Dimension

Software development typically involves both independent and de-
pendent creation. Programmers generally write programs without look-
ing at the source code of other programs. However, they often make use
of well-known program elements, as do engineers in other disciplines do.

Existing legal regimes tend to make a sharp distinction between de-
pendent and independent creation,?®2 but tend not to differentiate
among different kinds of dependent creation.28% We have identified sev-
eral types of dependent creation in software development that are distin-
guishable by the means through which a second comer gains access to the
know-how in the originator’s program. Means of access can affect the
difficulty of imitating an innovation, and hence the speed, cost, and mar-
ket effect of dependent creation. We suggest the following as usefully
distinguished varieties of access:

1. Dependent creation by means of:
(a) exact duplication of code
(b) abuse of access to nonpublic information
(c) decompilation
(d) extensive black-box testing, i.e., making a detailed study
of the program as its instructions are executed under
various conditions

(e) other observations about the program or its functionality
2. Independent creation (no access or influence)

The right problem to worry about is not dependent creation as such,
but situations in which dependent creation threatens to bring about mar-
ket failure. Instead of trying to stop dependent creation in software, the

282. Independent creation of a substantially similar work does not infringe a
copyright, whereas dependently creating a substantially similar work is likely to infringe.
See, e.g., Alfred Bell & Co. v. Catalda Fine Arts, Inc., 191 F.2d 99, 103 (2d Cir. 1951),
Independent and dependent creation are also important concepts in trade secrecy law.
Independent creation of the same innovation is lawful. It is only when a firm has
dependently created a product embodying the plaintiff’s innovation that misappropriation
of trade secrets will be found. See, e.g, Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470
(1974). Patent law, by contrast, does not distinguish, for liability purposes, between
dependent and independent creation. Any use of the invention will infringe patent rights.
See 35 U.S.C. § 154 (1988). Dependent creation may, however, be considered as a factor
in determining relief in patent infringement cases, i.e., an independent creator would not
be a willful infringer subject to enhanced damages awards. See S.C. Johnson & Son v.
Carter-Wallace, Inc., 781 F.2d 198, 201-02 (Fed. Cir. 1986) (holding district court’s refusal
to grant enhanced damages abuse of discretion upon finding of willful infringement).

283. Copyright law, for example, sometimes conflates different kinds of independent
creation situations. See, e.g., Goldstein, supra note 298, at § 7.2.2 (stating that defendant
can rebut inference of copying by attacking access and similarity, testifying as to
independent “mental processes,” or by reputational evidence).

HeinOnline -- 94 Colum. L. Rev. 2380 1994

1994] MANIFESTO 2381

law should regulate how rapidly certain kinds of dependently created
products can be introduced to the market and under what terms.

5.1.3 Overview of the Similarity Dimension

Another important consideration in judging the potential for mar-
ket-destructive effects pertains to the degree of similarity between the first
and second comers’ products and the markets in which they operate.
The following kinds of similarities have distinguishable market impacts:

Exact duplication of code
Clones and near-clones of internal or external compilations
Partial clones (clones of subcompilations)
Substantially similar program compilations
(a) without improvements
(b) with improvements
5. Substantially different program compilations
(a) migration of program elements to different markets
(b) interoperating programs
(c) add-on programs
6. Programs having the same general functionality but different
particularized functionality

Ll A e

Exact duplications of code have a high potential for market-destruc-
tive effects. Clones and near-clones have a lesser potential for market-
destructive effects than duplications of code, but there may still be a need
to regulate how quickly they can enter the market.28¢ In general, the less
extensive the similarity and the less proximate the markets of the produ-
cers, the lower is the potential for market-destructive effects, and hence,
the less need exists for legal regulation. When the second comer’s pro-
gram has the same general functionality, but different particularized
functionality, there is no potential for market failure because if this kind
of second comer succeeds in taking away customers from the developer
of a similar product, it will be by virtue of having introduced a more desir-
able product, rather than because the firm appropriated the fruits of the
first comer’s research and development expenses.

284. We have chosen to use the term “clone” in a more expansive manner than has
been common in technical parlance, where it has tended to be used to refer to a program
that precisely imitates the behavior of another. See, e.g., Winn L. Rosch, The Copyright
Law on Trial, PC Mag., May 26, 1987, at 157 (speaking of VP-Planner as a “near-perfect
clone” of 1-2-3). One expansion is our distinction of clones, near-clones, and partial
clones. See infra notes 353-367 and accompanying text for examples of clones, near-
clones, and partial clones. A second expansion is our use of the term “clone” to describe a
program whose internal design is substantially identical to another program’s internal
design. As previously demonstrated, both internal and external program compilations are
industrial compilations of applied know-how that need some protection against
substantially identical copying that can undercut natural lead time. See supra notes
76-110 and accompanying text. The remainder of the Article will use the term in this
broader fashion.

HeinOnline -- 94 Colum. L. Rev. 2381 1994

2382 COLUMBIA LAW REVIEW [Vol. 94:2308

5.2 Commentary on the Entity Dimension
5.2.1 Program Code as a Behaving Entity

The code of a program, whether in source or object form,285 is un-
questionably a valuable aspect of the program that a market-oriented
legal regime should protect. This aspect of programs is now protected by
copyright law in virtually every nation.286 There are, on balance, more
reasons to retain this choice than to change it, although the current copy-
right duration is probably longer than is necessary to protect software
developers from market failure.287

There are several reasons why program code should be protected for
a longer period than more abstract elements of programs. First, program
code embodies all of the valuable behavior of the program. Unlike more
abstract representations of the program, imitators can take the code
wholesale with no effort. Second, developers must make substantial in-
vestments not only to design, implement, and code a program, but also to
test, debug, and maintain the code.288 Code distributed in the market
reflects a substantial investment in testing and debugging beyond that
required for writing the initial source code. Third, protecting code for a
long time will not unduly impede competitive development of programs
because a second comer can write a noninfringing program to produce
the same behavior.

Although copyright in this respect works well for protecting object
code, it is worth noting that the real problem with exact copying of object
code is not that the prose constituting the copyrighted text has been
plagiarized, but that the copyist has acquired behavioral equivalence at
no cost and with no independent development effort. From an economic
standpoint, the copying of code presents the most serious danger of mar-
ket failure, because it undermines opportunities for the program devel-
oper to recoup its considerable research and development costs. The sec-
ond comer, having essentially no development costs, can undercut the
first developer’s price.28° Consumers might find this lower price attrac-
tive in the short run. If the situation is not corrected by the law or other-

285. See supra note 16.

286. Inclusion of a provision on copyright protection for computer programs in the
GATT/TRIPs Agreement elevates this choice to the status of a near-universal standard of
international trade law. See GATT/TRIPs, supra note 8, at art. 10, 33 L.L.M. at 287.

287. See Menell, supra note 6, at 1371.

288. See, e.g, Frank, supra note 84, at 22 (asserting that refinement and maintenance
phase of software development cycle constitutes 67% of development effort),

289. This rationale led CONTU to propose copyright protection for software, See
CONTU Report, supra note 17, at 10-11. At the April 1994 workshop discussing this
Article, Professor Joseph Strauss of the Max Planck Institute observed that software
developers must recoup the costs of developing the content of the works they publish. By
contrast, “development costs” for most textual works are borne by authors who may or may
not be able to recoup them by publication. See Joseph Strauss, Remarks at Symposium:
Toward a Third Intellectual Property Paradigm at Columbia University School of Law
(Apr. 22, 1594). An author’s ability to recoup her costs will not generally be of concern to

HeinOnline -- 94 Colum. L. Rev. 2382 1994

1994] MANIFESTO 2383

wise, consumers suffer in the long run when software products are under-
produced because optimal investments for innovation cannot be
economically justified.290

5.2.2 Program Compilations and Subcompilations

The compilation and subcompilation concepts will be discussed in
detail in the commentary on the similarity dimension.?°! The extent of
protection these entities need depends largely on the extensiveness of the
appropriation in relation to the products as a whole, how easy or difficult
the appropriation was, how quickly a new product embodying the appro-
priated innovation can enter the market, the degree of similarity between
the compilations embodied in the two products, the prices for which they
may be offered, and the proximity of the markets of the two products.

5.2.3 Algorithms

Although algorithms are typically perceived as individual compo-
nents of a software design,2°2 they have a number of component parts
which are organized into a coherent whole. Moreover, algorithms, con-
ceptually speaking, determine the behavior of the programs that embody
them.2®? Viewed in this way, even individual algorithms seem to be
among the aspects of programs that could be protected within an indus-
trial compilation framework.

Algorithms can be among the most valuable of the abstract elements
embodied in programs.2®* An algorithm that, for example, enhances the
speed at which certain program functions can be executed may provide
the program embodying it with a distinct advantage over competitors.295
To the extent that algorithm innovation is vulnerable to quick and easy
appropriation, a limited artificial lead time to the developer of an innova-

her publisher, whose main interest is to make a return after covering editing, printing, and
distribution costs. .

290. See supra note 102 and accompanying text.

291. See infra notes 353-382 and accompanying text.

292. See supra note 37 for a definition of algorithm. The industrial compilation
concept would provide a basis for protecting against commercial uses of, for example, the
same six algorithms for a program of a certain type for a limited period of time. This
subsection addresses the issue of whether the copying of a single, unpatented algorithm
should be regulated.

293. See Newell, supra note 6, at 1032.

294. See Remarks of Robert W. Lucky, Vice President of the Applied Research Group
at Bellcore, in Global Dimensions, supra note 6, at 385 (“[T]he real essence of software is
the algorithms").

295. The Karmarkar linear programming algorithm, for example, gave AT&T an
advantage in the market for flight scheduling software. See William G. Wild, Jr. & Otis
Port, The Startling Discovery Bell Labs Kept in the Shadows, Bus. Wk., Sept. 21, 1987, at 69
(describing Bell Labs’ Strategy of keeping Karmarkar algorithm secret to obtain “a head
start at developing commercial products”).

HeinOnline -- 94 Colum. L. Rev. 2383 1994

2384 COLUMBIA LAW REVIEW [Vol. 94:2308

tive algorithm may stimulate a more optimal level of investment for re-
search and development than might otherwise occur.

Notwithstanding Supreme Court decisions holding that program al-
gorithms are unpatentable,2°® a considerable number of patents have is-
sued in recent years to developers of new program algorithms.2%7 An im-
portant social benefit of algorithm patents is that they may reveal any
breakthrough discovery to the public, so that societal resources are not
spent redundantly to rediscover it. Furthermore, holders of algorithm
patents will often have incentives to license use of their algorithms by
others, particularly in application domains remote from the market in
which the patent holder’s own products may operate. This has the mar-
ket-preserving effect of getting compensation to innovators for the value
they introduce into the market, while allowing second comers to develop
innovative new applications for the original discovery.

Yet, patents may not be a market-preserving form of legal protection
for algorithms in all respects. Earlier Sections have discussed our reasons
for believing that the needs of the software industry and the protection
mechanisms of the patent regime are mismatched.2®® Many of these ap-
ply to algorithms as well as to other kinds of software innovations. An
additional consideration that disfavors patents for algorithms is the effect
that algorithm patents may have on the fields of computer science and
mathematics.29? Algorithms are abstract mathematical objects that deter-
mine how certain inputs will be transformed into certain outputs. They
are, or very nearly are, laws of nature and mathematical truths that patent
and copyright law have generally regarded as better left unprotected by
law. The field of computer science has advanced in part because re-
searchers in the field have been free to experiment with algorithms.300

Consequently, a market-oriented legal regime that protected algo-
rithms would regulate only commercial implementations of algorithms,
whereas patent law regulates virtually all uses of inventions.201 It would
preserve the trade secrecy option for algorithms,3°2 but might also en-

296. See supra notes 123-128 and accompanying text.

297. See supra notes 129-130 and accompanying text.

298. See supra notes 121-140 and accompanying text.

299. See Newell, supra note 6, at 1024-28.

300. See id. at 1026-33; Mathematical Report, supra note 221, at 3-4.

301. See 35 U.S.C. § 154 (1988) (granting exclusive rights to use an invention, not
just to sell products embodying it); see also Chisum, Algorithms, supra note 1, at 1017-18
(expressing concern that patent law might impede scientific and research uses of
algorithms). For a more general discussion of patent law and the desirability of permitting
scientific and research uses of inventions in fields in which basic and applied research are
closely related, see Eisenberg, supra note 250.

302. Trade secrecy is the principal way that software developers today protect
algorithms from market-destructive appropriations. When an algorithm is embodied in
program code, its know-how is not borne on the surface of the product, although it may be
discovered by decompilation. Protecting an algorithm by trade secrecy will not necessarily
afford its developer a permanent advantage in the market. Other developers may
independently come up with the same algorithm or may be able to infer the algorithm by

HeinOnline -- 94 Colum. L. Rev. 2384 1994

1994] MANIFESTO 2385

courage disclosure by providing a registration system through which de-
velopers of innovative algorithms could seek a period of blockage or com-
pensation for use of their innovations.3%® This would likely lessen the
pressure that in recent years has led more software developers to seek
patents for algorithms.

5.2.4 TFeatures

Features, like algorithms, tend to be perceived as individual compo-
nents of software products. However, features are often composites of
elements. Some are substantial in size and complexity, such as the macro
feature of Lotus 1-2-3.30¢ Other features are more modest in size, such as
the “zooming” animation produced when Macintosh files are opened
up.3%% Some features, however, consist of a single element.3%¢ Features
that consist of only one or a small number of elements are probably too
small in relation to the software product as a whole to affect investment
incentives. Hence, they should probably be exempt from regulation by a
market-oriented legal regime. Complex features should be regarded as
subcompilations and protected against market-destructive
appropriations.

Software developers have often adopted features that were first intro-
duced in another firm’s program. This adoption sometimes occurs in the
same market as the product that introduced the feature,3°7 and other
times, in an adjacent market.308 But features initially embodied in one
kind of program sometimes “migrate” to remote markets.3%® There has
been relatively little objection to feature copying or migration among
software developers, at least as long as the second adopter independently

analyzing the embodying program’s behavior. In the meantime, however, trade secrecy
protection for algorithms will tend to give developers lead time approximately covering the
expense and risk of creating their innovations. If an algorithm is obvious, other developers
are likely to figure it out relatively quickly and reimplement it in their own code if the
algorithm is superior to what they previously used. The less obvious an algorithm is, the
longer it will likely take competitors to figure it out, and the greater will be the natural lead
time advantage to the innovator. Either way, the innovator is likely to have some natural
lead time in the market.

303. See infra notes 429-434 and accompanying text.

304. See Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 64-65 (D.
Mass. 1990) (describing Lotus macro feature).

305. See Apple Computer, Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1036-37 (N.D.
Cal. 1992) (discussing Apple’s copyright claims for “zooming” animation).

306. An example of a primitive feature is giving users a choice between white or blue
as a background color for their screens.

307. Most commercially distributed word processing programs have adopted features
from one another.

308. The Sideways program, discussed infra notes 396 and 438 and accompanying
text, started out as a feature in an adjacent market, but ended in Lotus 1-2-3 and,
therefore, in its market.

309. The tool bar (i.e., a bar of menu command options found in many applications
with graphical user-interfaces) is an example of a feature that has migrated to a wide
variety of application domains.

HeinOnline -- 94 Colum. L. Rev. 2385 1994

2386 COLUMBIA LAW REVIEW [Vol. 94:2308

implemented the feature (i.e., wrote its own code).21¢ This is noteworthy
given the frequency with which feadture copying has occurred.

It is easy to understand why there would be little or no objection to
feature migration to very different application domains. If a program
does not compete in the same market as the program from which the
feature was copied, it is unlikely that the innovator will perceive the fea-
ture migration as injurious. Even when features have been copied by
firms operating in the originator’s marketplace, however, objections have
tended to center on the copying of all or a substantial subset of features
rather than on individual features as such.3!?

A plausible explanation for the general acceptability of copying indi-
vidual features among software developers is that there has not as yet
been any serious market failure resulting from such copying. The firm
that introduces a valuable feature to the market will have some natural
lead time protection by virtue of being first. It may take a year or so for
others to introduce a competing product with the same feature into the
market. While others are busy copying the feature to introduce it into
later versions of their own programs or into new programs, the originator
may be refining it or adding other new features to its products. These
refinements or new features may give the developer a new lead time ad-
vantage over those whose development efforts have been focused on
catching up to the previous innovation.

Whether individual features need artificial lead time protection,
other than that which might be available for those complex enough to be
protectable subcompilations, may depend on whether the pace of
software development speeds up. One sign that developers are becoming
concerned about feature copying as a prospective source of market fail-
ure is that recent software copyright lawsuits have focused on the copying
of features as a basis for infringement claims.312 The availability of a legal
regime that furnishes a relatively self-executing means to provide some
market-oriented protection to features may, as with algorithms, alleviate
some of the pressure to use copyright or patent law for this purpose.

310. In some cases, judges have relied on scenes a faire and related doctrines to reject
infringement claims based on the copying of features. See, e.g., Brown Bag Software v.
Symantec Corp., 960 F.2d 1465, 1472-73 (9th Cir.), cert. denied, 113 S. Ct. 198 (1992).

311. See, e.g., Apple Computer, Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1015-16
(N.D. Cal. 1992) (claiming copying of substantial number of features).

312. See sources cited supra notes 304-305; see also Lotus Dev. Corp. v. Borland Int'l,
Inc., 799 F. Supp. 203, 205 (D. Mass. 1992) (complaining about copying of macro feature);
John Richardson Computers, Ltd. v. Flanders [1993] F.S.R. 497, 515 (Ch.) (British case
complaining of copying of certain features of program for producing pharmaceutical
prescriptions).

HeinOnline -- 94 Colum. L. Rev. 2386 1994

1994] MANIFESTO 2387

5.3 Commentary on Access Dimension: Of Dependent and
Independent Creation

In a market-oriented legal regime, the lawfulness of different forms
of reverse engineering and dependent creation would be assessed, in
part, by whether they allowed second comers to acquire behavioral equiv-
alence with only trivial effort in comparison with high costs of initial de-
velopment. A given form would be lawful unless it would induce market
failure.3!3

5.3.1 Dependent Creation and Reverse Engineering Are Normal in
Technological Fields

Reverse engineering and dependent creation are well-accepted prac-
tices in all technological fields. Engineers are expected not only to know
the state of the art, but also to utilize efficient solutions to technological
problems that others have contrived. In the United States, the only tech-
nological breakthroughs that the law has protected against imitative copy-
ing were those that complied with the rigorous process and standards of
the patent system.314

The standard rules about reverse engineering and imitative copying
of unpatented technical innovation may need to be adjusted somewhat as
applied to computer software because of the greater vulnerability of inno-
vations embodied in software to trivial acquisition of equivalence.3!5
However, it is both fruitless and socially undesirable to insist, as some
software copyright proponents have done, that all software should be de-
veloped completely independently from the existing software technology
base, without reference to or utilization of techniques and methods em-
ployed by others.?16 Dependent creation of software, like dependent cre-
ation in other technological fields, is desirable unless it has market-de-
structive consequences. The remainder of this subsection will evaluate
the market impact of various forms of dependent creation of software
and will judge the legitimacy of various means of reverse engineering in
terms of these impacts.

313. See supra notes 102-110.

314. See, e.g., Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 159
(1989) (holding unpatented boat hull could be copied by plugmold process). In
Switzerland, unfair competition law can sometimes be used to stop “slavish imitations.” See
Reichman, Legal Hybrids, supra note 100, at 2474-75. '

315. See supra notes 93-100 and accompanying text.

316. See, e.g., Clapes, supra note 5, at 208 (arguing that large and complex programs
“exhibit all the attributes of those kinds of imaginative literary works of the type with which
the general public—and the copyright law—are already quite conversant,” and that
requiring software developers to create software independently is necessary to promote
proper incentives environment for software).

HeinOnline -- 94 Colum. L. Rev. 2387 1994

2388 COLUMBIA LAW REVIEW [Vol. 94:2308

5.3.2 Reproduction of Program Code as a Form of Dependent
Creation

If the general rule that unpatented technical innovations embodied
in mass-marketed products could be freely appropriated were to be ap-
plied to program code, it would result in market-destructive appropria-
tions of program innovations and underinvestment in the development
of commercially valuable programs.?!? In such a legal environment, the
developer of an innovative software product would have to recoup all of
its research and development expenses and make a profit on the first
(and likely only) sale of the product, a scenario unlikely to lead to a high
degree of investment in software.318

The decision to extend copyright protection to program code is de-
fensible on economic grounds. Copyright allows software developers to
spread recoupment of their research and development costs over sales of
multiple copies and obliges competitors to write their own program text
if they want to offer a competing product.31°

5.3.3 Abuse of Access to Documentation as a Means of Dependent
Creation

Another market-destructive form of dependent creation of software
occurs when the imitator abuses access to source code, flow charts, or
other documentation in breach of a confidential relationship or an en-
forceable contractual restriction. This abuse can facilitate the trivial ac-
quisition of functional equivalence, although it requires more effort to
engage in abuse-of-confidence dependent creation than in exact copying
of publicly distributed program code. Trade secrecy and contract law
protect against this form of dependent creation.320

317. Trade secrecy alone provides no protection to mass-marketed software products.
See, e.g., Videotronics, Inc. v. Bend Electronics, 564 F. Supp. 1471, 1475-76 (D. Nev. 1983)
(holding mass-marketed videogame program unprotected by trade secrecy law).

318. See CONTU Report, supra note 17, at 11.

319. As defensible as this decision was on economic grounds, a copyright-like form of
legal protection, such as that created for semiconductor chip designs, would have achieved
the same result, at least in the domestic market. The choice of copyright for program texts
has had the advantage of protecting programs internationally through existing copyright
treaties and conventions. See Dworkin, supra note 6. Now that much of the international
community has agreed to protect computer programs through copyright law as part of the
GATT, see GATT/TRIPs, supra note 8, at art. 10.1, 33 L.L.M. at 87, copyright can provide a
worldwide means for taking action against piracy of code. In truth, GATT might as easily
have included a provision reflecting a consensus on another form of legal protection for
programs. If a new consensus on legal protection of computer programs emerges, GATT
could be amended to reflect this consensus. See supra notes 146, 249, and infra note 467
for further discussion of the GATT/TRIPs agreement.

320. See, e.g., Boeing Co. v. Sierracin Corp., 738 P.2d 665, 673 (Wash. 1987) (relying
on both trade secrecy and contract law to protect unpublished information).

HeinOnline -- 94 Colum. L. Rev. 2388 1994

1994] MANIFESTO 2389

Because trade secrecy law is grounded in unfair competition princi-
ples,2! courts typically enjoin a trade secret misappropriator from fur-
ther abuse of access. However, courts in trade secrecy cases tend to limit
injunctive relief to that which is necessary to preserve the proper compet-
itive environment.®?? Injunctions are, for example, frequently granted
for the amount of time that it would have taken someone to lawfully re-
verse engineer the information or discover it independently.323

Trade secrecy remedies thus ensure that both the original innovator
and the dependent creator have an opportunity to participate in the mar-
ketplace in a market-preserving way. The trade secret holder can get an
injunction to restore the lead time advantage the holder would have had
if no abuse of access had occurred. The dependent creator is not perma-
nently banned from competing in the marketplace. However, its entry to
the market is delayed long enough to ensure the innovator’s lead time is
not destroyed through abuse of access.32%

5.3.4 Decompilation as a Means of Dependent Creation

A considerable controversy has erupted in recent years concerning
decompilation of computer program object code. Strictly speaking,
decompilation is not itself a form of dependent creation. Rather, it is a
means of getting access to information that, once known, may become
the basis of a subsequent dependently created program, i.e., a program
incorporating whatever information was discerned from the decompila-
tion process.

Thus far, much of the legal debate has concerned the application of
existing legal regimes. We suggest that the focus of the debate should be
on the market effects of dependent creations resulting from
decompilation.

Under traditional principles of trade secrecy and patent law, pur-
chasers have been free to disassemble a publicly distributed technological
product embodying an unpatented innovation.3?5 If the disassembler
thereafter constructed a product embodying the innovation and sold it in
competition with the original, the innovator had no legal recourse (un-

321, See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 481-82 (1974). The
American Law Institute is in the process of preparing a new Restatement of the Law of
Unfair Competition that will include provisions on trade secrecy.

322. See, e.g., Northern Petrochemical Co. v. Tomlinson, 484 F.2d 1057, 1060-61
(7th Cir. 1973) (holding owner of process adequately compensated by competitor’s
refraining from engaging in competition for period of time necessary to develop process
independently).

323. See, e.g., Winston Research Corp. v. Minnesota Mining & Mfg. Co., 350 F.2d 134,
142 (9th Cir. 1965). See generally Note, Trade Secrets: How Long Should an Injunction
Last?, 26 UCLA L. Rev. 203, 215-16 (1978) (discussing benefits of finite injunctions).

324. We emphasize this point because some of the market-preserving principles of
trade secrecy law could be applied to software under a market-oriented legal hybrid
regime.

325. See supra note 314 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2389 1994

2390 COLUMBIA LAW REVIEW [Vol. 94:2308

less the second comer misrepresented the source of the goods).326 Ap-
plying this rule to software, even as amended by the copyright stricture
against selling someone else’s code, would result in the simple require-
ment that subsequent developers write their own programs to reimple-
ment the same technical design.327

To overcome this seemingly obvious result, some have argued that
decompilation is an infringement of copyright because it necessarily in-
volves making intermediate copies of program code.32¢ Its defenders
counter that decompilation is a fair use of the copyright in a program,
particularly when undertaken in order to gain access to its functional de-
tails, such as information necessary to achieve interoperability.32° As long

326. See, e.g., Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 149-50
(1989).

327. As we have explained supra notes 158~160 and accompanying text, this is all that
we believe Congress to have intended that copyright law should protect in computer
programs.

328. Those who oppose decompilation say that it cannot be a fair use of the program
copyright because the copying is commercial, decompilers are trying to gain access to
something which the developer has chosen to keep secret, and the whole of the program
must be copied to decompile it. In addition, they argue that there is harm to the market
for the copyrighted work, since those who decompile often intend to develop competitive
substitutes for the programs they decompile. See, e.g., William F. Patry, The Fair Use
Privilege in Copyright Law 400-02 (1985); Allen R. Grogan, Decompilation and
Disassembly: Undoing Software Protection, Computer Law., Jan. 1984, at 1; sce also Miller,
supra note 1, at 1014-17 (criticizing court decisions permitting decompilation as fair use).
Grogan argues that decompilation is wrongful under both copyright and trade secrecy law.
If intermediate copying is copyright infringement, then decompilation of program code
will be an improper means of obtaining the secret, giving rise to a'claim of trade secret
misappropriation as well as of copyright infringement. See Grogan, supra, at 9-10. The
decompilation-as-infringement position is, in essence, an attempt to convert copyright into
trade secrecy. Although United States courts have rejected this argument, European
policymakers have decided, in order to protect investment in software, to permit this
conversion to occur except for decompilation to get access to the information necessary to
achieve interoperability. See EC Directive, supra note 7, Recitals, art. 6, at 42-45. For a
discussion of the history of the Directive, see Thomas C. Vinje, The Legislative History of
the EC Software Directive, in A Handbook of European Software Law 39 (Michael
Lehmann & Colin Tapper eds., 1993). The Directive also restricts the use of interface
information obtained by decompilation. See EC Directive, supra, at art. 6.2. Thus,
publication of a book about undisclosed interface information, such as that recently
published in the United States about undocumented calls of the Microsoft Windows
program, would have been unlawful in Europe.

329. Those who think decompilation should be lawful argue that the decompilation is
mainly undertaken for research and analysis purposes. Most copyrighted works reveal
their contents to anyone seeking to read them, which makes it unnecessary to reproduce
the texts to get access to the ideas, techniques, methods, and information they contain. By
contrast, the unprotectable elements embodied in computer programs can only be
discerned by decompilation. If decompilation is forbidden, software developers could use
copyright law to get de facto monopolies on functional processes and systems embodied in
programs that have not met patent standards. Although the whole of a program is
generally copied during decompilation, the copy is intermediate in character. So long as
the decompiler does not appropriate expression from the program, no harm cognizable by
copyright law generally occurs. See Ronald S. Laurie & Stephen M. Everett, Protection of

HeinOnline -- 94 Colum. L. Rev. 2390 1994

1994] MANIFESTO 2301

as the decompiler refrains from copying expression from the decompiled
program, they assert, no harm of concern to copyright law can occur to
the market for the decompiled program.330

Two federal courts of appeals have decided that making intermedi-
ate copies of programs is fair use when done for a legitimate purpose,
such as to gain access to information necessary to develop a program that
can interoperate with other programs or with hardware.331 While these
rulings are unexceptionable as a matter of copyright and trade secrecy
law,332 they may leave software internals more vulnerable to market-de-
structive appropriations than is desirable.

Trade Secrets in Object Form Software: The Case for Reverse Engineering, Computer
Law., July, 1984, at 1. Support for the lawfulness of decompilation has generally been
strong within the legal academic community. See, e.g., Sega Amicus Brief, supra note 5;
LaST Frontier Report, supra note 1, at 25; Jessica Litman, Copyright and Information
Policy, Law & Contemp. Probs., Spring 1992, at 185, 196-201; Charles R. McManis,
Intellectual Property Protection and Reverse Engineering of Computer Programs in the
United States and the European Community, 8 High Tech. L.J. 25, 28 (1993); Reichman,
Applied Know-How, supra note 5, at 700~03. But see Miller, supra note 1, at 1014-22
(arguing that decompilation should not be fair use under Copyright Act, dealing with
arguments made in Atari and Sega).

Some debate exists in the United States concerning the circumstances under which
developers can avoid this result by contract provisions forbidding decompilation or
disassembly. See, e.g., McManis, supra, at 87; Rice, supra note 26, at 162-66, 186-87
(arguing that contractual restrictions contravene copyright policy and lack statutory
foundation). In member states of the European Union, contractual restrictions on
decompilation are unenforceable insofar as they attempt to avoid the decompilation-
necessary-to-achieve-interoperability provisions of the software directive. See EC Directive,
supra note 7, at art. 9.1; see also id. at art. 6 (decompilation).

330. Developing a noninfringing work that embodies another work’s ideas, even if it
is far more successful than the work whose ideas it borrows, does not harm market interests
in any way that concerns copyright. See, e.g., Bevan v. Columbia Broadcasting Sys., Inc.,
329 F. Supp. 601, 604-05 (S.D.N.Y. 1971) (holding that “Hogan’s Heroes” program did
not infringe copyright in Stalag 17 play despite numeorus similarities).

331. See Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1520-21 (9th Cir. 1992); Atari
Games Corp. v. Nintendo of America, Inc., 975 F.2d 832, 843 (Fed. Cir. 1992). These
decisions apparently permit decompilation to gain access to other “uncopyrightable”
elements of programs as well. See Pamela Samuelson, Fair Use for Computer Programs
and Other Copyrightable Works in Digital Form: The Implications of Sony, Galoob, and
Sega, 1 J. Intell. Prop. L. 49, 86-98 (1993).

332. It would have distorted traditional principles of intellectual property law to allow
copyright to be used as trade secrecy law. Copyright has traditionally promoted the
dissemination of knowledge, not its suppression. “[I]t should not be forgotten that the
Framers intended copyright itself to be the engine of free expression. By establishing a
marketable right to the use of one’s expression, copyright supplies the economic incentive
to create and disseminate ideas.” Harper & Row, Publishers v. Nation Enters., 471 U.S.
539, 558 (1985); L. Ray Patterson, Free Speech, Copyright, and Fair Use, 40 Vand. L. Rev.
1, 4 (1987). As noted above, supra notes 118, 119, 314 and accompanying text, studying
products sold in the marketplace has always been a fair means of acquiring know-how. It is
interesting to note that the Ninth Circuit Court of Appeals in Sega expressed concern that
Sega’s argument would, in effect, cause copyright law to provide patentlike protection
without meeting patent standards or procedures, see Segz, 977 F.2d at 1527, but did not
notice that the argument would, in effect, have made copyright into a trade secrecy law.

HeinOnline -- 94 Colum. L. Rev. 2391 1994

2392 COLUMBIA LAW REVIEW [Vol. 94:2308

In our view, decompilation should be regulated by the law—
although not necessarily by copyright law—only if and to the extent that
it permits competitors to acquire behavioral equivalence with only trivial
effort and thereby induces market failure. This can occur only if,
through decompilation, the imitator can create a virtually identical (and
equally good) program costing significantly less than was required to de-
velop the decompiled program.

Given the present state of technology, we doubt that decompilation
presents a serious threat of market-destructive effects.2?® Decompilation
tends to be undertaken when it is the only way—short of a prohibitively
expensive license—to get access to essential information. As a conse-
quence, software developers today are often able, in practice, to maintain
as trade secrets much of the know-how embodied in their programs. Be-
cause reverse-engineering technology may substantially improve, how-
ever, the know-how embodied in program internals may eventually be-
come as vulnerable to rapid appropriation as is currently true for
program externals.334

Beneath the anxiety that some express about decompilation is a tacit
recognition that the know-how embodied in internal designs of pro-
grams cannot be protected by existing legal regimes once it is discerned,
however this may occur. Many of those who have seen the looming prob-
lem, however, are nonetheless trying to stop decompilation with copy-
right, refusing to recognize that the source of the problem is that existing
legal regimes cannot protect valuable aspects of software.335

The attempt to outlaw decompilation is, in our view, misguided be-
cause it focuses on the wrong problem. The real problem is that the
know-how embodied in programs is valuable, yet potentially vulnerable to
trivial acquisitions of equivalence. If the law addresses the real problem
underlying the decompilation controversy by devising a market-oriented
form of legal protection for the compiled know-how and industrial de-
signs embodied in programs, it may become unnecessary to regulate
decompilation.

However, even if policymakers decide to regulate decompilation to
some degree,336 they should recognize that a complete ban is contrary to

333. Decompilation is very difficult and time-consuming to do. In addition, even after
the decompiler discerns something useful from the decompilation, he or she must still
expend effort to embody it in a differently expressed program. See supra notes 89-91 and
accompanying text; see also Finding a Balance, supra note 2, at 146-48 (discussing
difficulties inherent in decompilation process).

334. See sources cited supra note 115.

335. See, e.g., William T. Lake et al., Tampering with Fundamentals: A Critique of
Proposed Changes in EC Software Protection, Computer Law., Dec. 1989, at 1, 5
(“Decompilation of a computer program does not provide an imitator with just a good
start in producing a competing product; it gives him virtually everything necessary to
produce a functionally identical product.”) (emphasis omitted).

336. Taking a market-oriented approach to regulation of decompilation might lead to
making distinctions between different purposes for decompiling. For example, the law

HeinOnline -- 94 Colum. L. Rev. 2392 1994

1994] MANIFESTO 2393

basic norms of competition law.337 It would limit access to and reuse of
information about incremental innovations in mass-marketed products
out of proportion to the harmful effects such uses have in the market-
place. It would also result in socially wasteful replications of effort which
could have other sorts of market-destructive effects.

5.3.5 Detailed Study of Program Externals as a Means of Dependent
Creation

A more common, less costly, and less controversial means of engag-
ing in dependent creation of computer programs involves use of a tech-
nique known as “black box” testing.33® Studying a program by watching it
in operation can reveal information about its internal construction.3°
Generally, however, the intent is simply to make an exhaustive list of all
the things the program does, so that the imitator can replicate some or
all of its functionality in an independently written program. To the ex-
tent the subsequently developed program incorporates knowledge de-
rived from this sort of study, the second program can be said to have
been dependently created. Although virtually no one seems to argue that
black box testing ought to be prohibited as an illegitimate form of reverse
engineering,34® some lawsuits have challenged the lawfulness of
dependently created products arising from such study.34!

Reimplementing another program’s functionality is not, in our view,
a copyright, patent, or trade secret misappropriation.242 However, it can
have market-destructive effects because of the relative ease and low cost
with which a skilled engineer can appropriate the know-how required to
produce certain behavior by watching another firm’s program in action.
If the engineer thereafter makes a functionally indistinguishable program
that arrives in the market very quickly, it will undercut the ability of the

might regulate decompilation used to get access to internal know-how in order to make a
competing program more heavily than decompilation in pursuit of the information
necessary to create a program that could interoperate with the decompiled program but
did not compete with it. See infra notes 435-438 and accompanying text.

337. See sources cited supra note 233.

338. See supra notes 23-24 and accompanying text.

339. Watching a spreadsheet program in operation, for example, may allow a skilled
programmer to infer the algorithm that must have been used to do recalculation.

340. In one case, Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 261 (5th Gir.
1988), a software developer argued that executing the program in order to study its
operations and make a program that interacted with it was unlawful because it involved
making copies of the program beyond the use-copying privilege embodied in 17 U.S.C.
§ 117 (1988). The Court of Appeals rejected this argument. See id.

341, In Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 69 (D. Mass.
1990), Lotus challenged Paperback’s black-box reimplementation of 1-2-3. Copyright
claims for infringement of “feel” are similar. To say that a software developer copied the
“feel” of an original program is to say that the imitator observed the target program’s
external activities and reimplemented them. See Lotus Dev. Corp. v. Borland Int’l, Inc,,
799 F. Supp. 203, 220-21 (D. Mass. 1993).

342, See supra notes 325-327 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2393 1994

2394 COLUMBIA LAW REVIEW [Vol. 94:2308

first firm to recoup its considerable research and development
expenses.343

5.3.6 Independent Creation

Software developers also engage in a substantial amount of in-
dependent creation, both in writing code and in designing the industrial
compilation of the program. They often do independent development
for reasons other than the difficulty of reverse engineering. They may,
for instance, prefer their own solutions to a technological problem over
solutions adopted by others. Or they may be working with a different set
of constraints, which makes an approach used in another software prod-
uct unsuitable even for a similar project.344

In software, as in other technical fields, independent workers may
achieve similar results. Where the compilation has a small number of
elements, consists of elements that software engineers would typically in-
clude in a program of that kind, or pertains to a particularly efficient
solution, similarities in program compilations may be as likely to be prod-
ucts of independent effort as of dependent imitation.34®

5.4 Commentary on Similarity Dimension

The copyright case law has tended to recognize only two kinds of
similarities among programs: literal similarities involving the copying of
code;346 and “nonliteral” similarities, frequently called “structure, se-

343. See supra note 102. Other activities are also potential means of dependent
creation of software. Reading articles or advertisements about software products in
magazines can also reveal useful know-how about a program. Watching a program being
demonstrated at a conference may reveal the features it offers that would be desirable in
other products as well. This sort of dependent creation is a normal part of the professional
work in technological fields and is widely regarded as fair competitive behavior. See, e.g.,
Pamela Samuelson & Robert J. Glushko, Comparing the Views of Lawyers and User
Interface Designers on the Software Copyright “Look & Feel” Lawsuits, 30 Jurimetrics J.
121, 132-33 (1989).

344. When it would be inefficient to use the same technical design, but a second
comer uses it anyway, the second comer may be engaging in the sort of imitation that has
market-destructive effects. On occasion, courts have regarded this kind of conduct as
indicative of copyright infringement. See, e.g., EF. Johnson Co. v. Uniden Corp. of
America, 623 F. Supp. 1485, 1494 (D. Minn. 1985). Use of the same algorithm when
others would have been more efficient may be indicative of market-destructive cloning, but
not of copyright infringement. In this regard, we disagree with Professor Miller. See
Miller, supra note 1, at 1009 n.153.

345. Courts have ignored commonplace similarities in some software copyright cases,
using the scenes a faire or merger doctrines. See, e.g., Brown Bag Software v. Symantec
Corp., 960 F.2d 1465, 1472-73 (9th Cir. 1992). See supra note 58 for the Second Circuit’s
view that use of the same highly efficient design in two programs has no bearing on
proving dependent creation.

346. See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253
(3d Cir. 1983) (copying of operating system programs), cert. dismissed, 464 U.S. 1033
(1984).

HeinOnline -- 94 Colum. L. Rev. 2394 1994

1994] MANIFESTO 2395

quence, and organization.”*” We have found it helpful to distinguish a
broader array of similarities among programs and program elements.348
Each has a somewhat different potential to brlng about market-destruc-
tive effects.

5.4.1 .The Two Easiest Cases: Similarity in Code and in General
Purpose or Function

The most trivial way to acquire functional equivalence with another
program is, as we have said, the exact duplication of program code.34°
Whether the identity in code is complete or only partial, code copying is
an easy case which copyright forbids with no difficulty.35° The result ob-
tained under copyright law is consistent with the market-preserving prin-
ciples we seek to promote in the regulation of competition in the
software industry.

The easy cases at the opposite end of the spectrum are programs
which are similar only at high levels of abstraction, such as in their gen-
eral purpose or function. No one should have even a short-term monop-
oly for being the first to think of “computerizing” certain functions.35! If
a second comer implements these functions in a very different way, the
similarities present no danger of market failure. Both competition and
innovation will be enhanced by the appearance of different products in
the market that implement the same or similar functions in different
ways.352

5.4.2 Of Clones, Near-Clones, and Partial Clones

Many software developers in the mid-1980s thought that software
clones would be legal because clones of hardware products were.353
Computer clones not only expanded the supply of computers that could
achieve the same functionality, but often featured incremental improve-
ments over the hardware they cloned. They also increased price competi-

347. See, e.g., Lotus Dev. Corp. v. Paperback Software Int’l, Inc., 740 F. Supp. 37, 55-
56 (D. Mass. 1990).

348. For an overview of our spectrum of similarities, see supra note 284 and
accompanying text.

349, See supra note 95 and accompanying text.

350. See, e.g., Apple Computer, Inc. v. Formula Int’l, Inc., 594 F. Supp. 617, 622-23
(C.D. Cal. 1984). Courts have sometimes found reproduction of short code segments to be
non-infringing when necessary, for example, to achieving interoperability. See, e.g., Sega
Enters. v. Accolade, Inc., 977 F.2d 1510, 1524 n.7 (9th Cir. 1992).

351. Some patents have, unfortunately, been for high-level concepts of this sort. See,
e.g., U.S, Patent No. 5,105,184, supra note 134.

352. See Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 65-67 (D.
Mass. 1990) (noting differences among spreadsheet programs and competitive benefits of
these differences).

353. See, e.g, Rosch, supra note 284, at 157.

HeinOnline -- 94 Colum. L. Rev. 2395 1994

2396 COLUMBIA LAW REVIEW [Vol. 94:2308

tion in computer markets.3>¢ The interchangeability of software and
hardware and the independence of program text and behavior caused
many to think that software clones were and should be lawful. Software
clones seemed capable of offering the same competitive benefits in
software markets as clones had provided in hardware markets.355 All one
was obligated to do in preparing a software clone, under this view, was to
write one’s own code to reimplement the same behavior.356

Cloning the behavior of a program has occasionally, although
wrongly in our view, been regarded as copyright infringement.37 Yet, we
have sympathy with those who argue that developers of innovative pro-
gram behaviors should have an opportunity to benefit from the value
they have contributed to the market before others can enter the market
with competitive substitutes. It would be nice if natural lead time suf-
ficed. But because program behavior can be so easily discerned and
reimplemented by skilled programmers, some artificial lead time may be
required so that innovators have an opportunity to recoup their research
and development expenses, averting market failure.358

354. This was one of the defendants’ arguments in Paperback, 740 F. Supp. at 77.
Paperback’s spreadsheet program had a database component that Lotus 1-2-3 did not have
at the time Paperback’s product came on the market.

355. See, e.g., Rosch, supra note 284, at 164.

356. This was essentially the defendant’s argument in Paperback, 740 F. Supp. at 73
(proposing “bright-line” rule that copyright protects only source and object codes); see
also Digital Communications Assocs., Inc. v. Softklone Distribut. Corp., 659 F. Supp. 449
(N.D. Ga. 1987) (screen displays not copyright protected because various programs could
produce same screen). An interesting aspect of software copyright cases involving clones is
that they have typically focused on the selection and arrangement of command terms in
order to take advantage of the copyright case law on compilations in which originality in
selection and arrangement of words has often been protected. See Ginsburg, supra note
74, at 1893-94. For defense efforts to characterize command hierarchies as akin to blank
forms, see, e.g., Softklone, 659 F. Supp. at 460-62, or functional arrangements of words, see,
e.g., Lotus Dev. Corp. v. Borland Int’l, Inc., 799 F. Supp. 203, 212-14 (D. Mass. 1992) that
are unprotectable by copyright law under precedents such as Baker v. Selden, 101 U.S. 99
(1879) have generally not found favor in the courts, despite their plausibility. The
selection and arrangement of words, dials, or switches, constituting the user interface of a
physical machine, such as the flight instrument panel of an airplane, would easily be
recognized as unprotectable by copyright law. The fact that many elements of the flight
instrument panel have words above or beneath the dials, switches, or gauges does not
change the copyright status of flight instrument panels. Command terms that serve as the
means for invoking software machine functions should be viewed in the same manner. On
occasion, it becomes apparent that plaintiffs in user interface cases are really trying to stop
competitors from selling a functionally indistinguishable product, not just protecting a
display of command terms. See Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 223,
234-35 (D. Mass. 1993) (finding “nonliteral” infringement because Borland program
reproduced the Lotus program’s sequence of functions without displaying Lotus’s user
interface commands).

857. See Borland, 831 F. Supp. at 234.

358. Because of the Whelan, Softklone, Paperback, and Borland decisions, clones of
software products have been deterred from the market. See Whelan Assocs. v. Jaslow
Dental Lab., Inc., 797 F.2d 1222 (3d Cir. 1986) (finding infringement in part because
defendant’s product performed some of same functions in same way), cert. denied, 479

HeinOnline -- 94 Colum. L. Rev. 2396 1994

1994] MANIFESTO 2397

One of the clearest examples of a potentially market-destructive
software clone was the VP-Planner program that Paperback Software sold
as a “work-alike” of Lotus 1-2-3.35% An example of a near-clone3%? is the
Key Reader feature of Borland’s Quattro Pro.36! This feature allowed
users familiar with the Lotus command hierarchy to utilize the same keys-
trokes to execute the same sequences of functions as in the Lotus pro-
gram, effectively reproducing the behavior of 1-2-3 without any display of
the Lotus commands.362 The Key Reader feature permitted Borland’s
product to achieve behavioral equivalence with the Lotus program with
only slightly more effort than if it had reproduced the command hierar-
chy exactly.®$® Borland’s inclusion of additional commands, additional
functionality, and its own native user interface in Quattro Pro did not
change the fact that it also achieved behavioral equivalence with the
Lotus program and was a kind of clone.364 Near-clones should be regu-
lated for a market-preserving period of time just as clones would be.

U.S. 1031 (1987); Borland, 831 F. Supp. 223 (finding infringement from copying of 1-2-3
command structure); Paperback, 740 F. Supp. 37 (finding infringement because of copying
virtnally whole user interface of Lotus 1-2-3); Softklone, 659 F. Supp. 449 (finding
infringement because of similarities in layout of commands for communications software).
Some recent cases have suggested that similarities in behavior should not be considered a
basis for copyright infringement. See, e.g., Computer Assocs. Int’l v. Altai, Inc., 775 F.
Supp. 544, 559-60 (E.D.N.Y. 1991), aff’d in part, vacated in part on other grounds, 982
F.2d 693 (2d Cir. 1992). If the First Circuit rules that similarities in program behavior are
not appropriate bases for finding infringement in the Borland case, it is possible that clones
may begin to reappear in the software market. In our view, clones should be blocked from
the market for a time, but it would undermine the norms of the competition policy
underlying intellectual property law to block unpatented technical innovations for the 75
year term that copyright law provides to protect the expressive elements of copyrighted
works.

359. See supra note 29 and accompanying text. Clones are generally easy to detect
because of the identity of elements that the cloned product will have with the product
being cloned. Some of the early clones were produced by firms that chose product names
indicating the nature of their products. See, e.g., Softklone, 659 F. Supp. at 453 (clone of
popular communications program was named “Mirror”). Mosaic Software named its clone
of Lotus 1-2-3 “The Twin.” See Edelman, supra note 29, at 30.

360. A nearclone is a program that attains functional equivalence or near
equivalence with another program, even if there is some variation in the ordering of
compilation elements.

361. See Borland, 831 F. Supp. 223.

362. See id. at 228-29. A file in the Borland program contained a representation of
the Lotus command hierarchy in a scrambled order, with each command term designated
by one letter.

363. See id. at 229-31.

364. Borland attempted to distinguish itself from Lotus Dev. Corp. v. Paperback
Software Int'l, Inc., 740 F. Supp. 37 (D. Mass. 1990), by arguing that its was not a clone.
See, e.g, Brief of Defendant/Appellant Borland Int’l Inc. at 4~16, Lotus Dev. Corp. v.
Borland Int’], Inc.,, No. 932214 (1st Cir. appeal docketed Nov. 19, 1993). On the other
hand, Borland’s product clearly reproduced the functionality of the Lotus product. See
Borland, 831 F. Supp. at 229-31, It is noteworthy, however, that Borland’s product came
into the market in 1987, whereas Lotus 1-2-3 entered the market in 1983. Depending on
the length of blockage that a market-oriented legal regime would provide, Borland might

HeinOnline -- 94 Colum. L. Rev. 2397 1994

2398 COLUMBIA LAW REVIEW [Vol. 94:2308

The facts of Whelan Associates v. Jaslow Dental Laboratory, Inc.%5% pres-
ent a good example of partial cloning (that is, cloning of subcompila-
tions). Rand Jaslow copied the detailed procedure for how information
should flow through Whelan’s Dentalab program, as well as the detailed
manner in which five subroutines performed their functions.2¢6 In doing
so, he copied industrial design elements of Whelan’s program, some of
which were internal design elements (the information flow) and some
external design elements (how the subroutines behaved). Jaslow at-
tempted to achieve functional equivalence with these parts of Whelan’s
program without the skill or effort of independent development. We re-
gard neither as copyright infringement. However, Jaslow’s cloning of the
information flow and partial cloning of the behavior of five subroutines
were objectionable if they undercut Whelan’s lead time for the incremen-
tal innovations she had introduced in her product.367

A market-oriented legal regime aimed at protecting industrial design
elements of programs would not have an equivalent to copyright’s
“merger” doctrine368 that would disqualify from protection highly effi-
cient industrial designs embodied in programs or subcompilations that
had become de facto standards in the marketplace.’6° We agree with
Judge Keeton that functionally optimal program designs and aspects of
programs that have become de facto standards may need some legal pro-

not have been blocked from using the Lotus command heirarchy because the blocking
period might have expired. However, it might, for a time, have had to pay a reasonable
royalty for this use of Lotus’s innovation. As Section 7.5 will explain, we regard payment of
reasonable royalties as an element of a market-oriented legal regime that should be
available to innovators who register their innovative software designs.

365. 797 F.2d 1222 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987). Recall that
differently structured texts can produce the same behavior, see supra notes 22-24 and
accompanying text, so there is no necessary relationship between the cloning of behavior
and of information flow.

366. See id. at 1245-48; Whelan Assocs. v. Jaslow Dental Lab., Inc., 609 F. Supp. 1307,
1314 (W.D. Pa. 1985), aff’d, 797 F. 2d 122 (3d Cir. 1986), cert. denied, 479 U.S. 1031
(1987).

367. From a market-oriented standpoint, it would be significant that Whelan (with
Jaslow’s help) began marketing the Dentalab program written in EDL in 1979. Jaslow
began its development effort in 1982 and began marketing its similar product in BASIC in
1983. See Whelan, 609 F. Supp. at 1315.

868. See supra note 197 and accompanying text for a discussion of the merger
doctrine. Nor should “merger” or a kindred rule apply to software in the rare instance in
which there is truly no other way to perform a function than the method used by the first
comer. The short duration of protection available from a market-oriented regime would
only give the first comer a lead time-advantage for having been the first to discover the one
way to do some task. However, independent discovery of the same one way would, at least
for unregistered material, not be subject to liability.

369. See supra note 197 and accompanying text for a discussion of Professor Menell’s
suggestion that the merger doctrine should be employed to limit copyright protection for
highly efficient software design elements and software components that had become de
facto standards. While we believe Menell’s proposal is economically more sensible than
the overprotection that copyright would give to efficient or de facto standard elements of
programs, his proposal logically leads to the underprotection of efficient software designs.

HeinOnline -- 94 Colum. L. Rev. 2398 1994

1994] MANIFESTO 2399

tection.370 It is, after all, the goal of every programmer to design func-
tionally optimal programs or program components that become de facto
standards in the marketplace. However, traditional principles of copy-
right law, as well as competition policy more generally, call for withhold-
ing copyright protection from functionally optimal program designs and
de facto standards.37! This is why we argue for a market-oriented legal
regime. Under such a regime, competitors’ need to use efficient designs
or emergent standards from other firms’ programs would be satisfied by
the short period of protection that a market-oriented regime would pro-
vide and by rights to use under standard license fees.

5.4.3 Of Substantially Similar and Substantially Different Program
Compilations

While it is easy to decide to protect software developers against
clones of their programs and not to protect against different programs
that have been substantially independently created, the range of cases
between these extremes presents more difficult choices.372 Traditionally,
copyright places its threshold low and protects against any work that is
substantially similar and not independently developed.37® Patent, on the
other hand, places its standard high and requires that an infringer’s
product be substantially identical to the claimed invention on an ele-
ment-by-element basis without regard to the dependency of the second
comer’s product.37* A new regime for software innovations could choose
one of these models or some compromise between them.

We favor a substantial identity standard for software. Copyright’s
substantial similarity standard may be appropriate for artistic or fanciful
works where the creator’s possibilities are nearly infinite and expression
of an author’s personality is highly valued. Programs, however, are indus-
trial in character and, like other products of engineering processes, they
often combine preexisting elements in incrementally new ways.37”> More-
over, many subcomponents of program compilations are “generic” to

370. See, e.g., Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 57 (D.
Mass. 1990).

371. See supra notes 197, 241-242.

372. Lotus 1-2-3, for example, was in many ways substantially similar to VisiCalc, yet it
included many new features and improved on VisiCalc’s design. See, e.g., Bill Machrone,
Roots: The Evolution of Innovation, PC Mag., May 26, 1987, at 166, 168-70.

373. See supra note 282,

374. Patents may be infringed if all elements of a patent claim are present in an
accused device or, under the doctrine of equivalents, if there are equivalents to each of
these elements in the accused device. See, e.g., Graver Tank & Mfg. Co. v. Linde Air Prods.
Co., 339 U.S. 605, 607 (1950); Pennwalt Corp. v. Durand-Wayland, Inc., 833 F.2d 931, 935
(Fed. Cir. 1987), cert. denied, 485 U.S. 961 (1988); Martin J. Adelman & Gary L.
Francione, The Doctrine of Equivalents in Patent Law: Questions that Pennawalt Did Not
Answer, 137 U. Pa. L. Rev. 673, 700, 728-29 (1989); Harold C. Wegner, Equitable
Equivalents: Weighing the Equities to Determine Patent Infringement in Biotechnology
and Other Emerging Technologies, 18 Rutgers Computer & Tech. L.J. 1 (1992).

375. See supra notes 67-74 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2399 1994

2400 COLUMBIA LAW REVIEW [Vol. 94:2308

compilations of that kind.37¢ A legal regime that protects this kind of
artifact should be careful not to interfere with the kind of incremental
reuse that is crucial to the practice of engineering.3?7 Even copyright law
has traditionally extended a relatively thin scope of protection, akin to
the anti-cloning approach discussed here, to works whose content is
predominantly functional.378

An anti-cloning standard would also be more predictable than a sub-
stantial similarity standard. Innovators, imitators, and courts can all be
expected to recognize near-clones without much difficulty. Nonetheless,
several variations are worth considering and the final standard should be
open to discussion.

We note, for instance, that the Semiconductor Chip Protection Act
(SCPA)379 adopted a substantial similarity standard for judging infringe-
ment of chip designs,380 although it did so with interesting twists that may
also be applicable to program innovations. Under SCPA, if a second
comer undertakes legitimate reverse engineering and decides, after rea-
soned consideration and substantial toil, that it should use a substantially
similar design, there will be no infringement unless the two chips are
substantially identical.®8! In other words, the SCPA gives engineers addi-
tional leeway where practical considerations are paramount.

The SCPA infringement standard also considers whether the second
comer has introduced improvements, again varying the substantial simi-
larity test to encourage cumulative innovation.382 Whether a second

376. See Brown Bag Software v. Symantec Corp., 960 F.2d 1465, 147577 (9th Cir.
1992).

877. See supra notes 72-74 and accompanying text. See also Machrone, supra note
372, at 166-67 (explaining how software developers build on previous work of other
developers).

378. See supra notes 182-189 and accompanying text; see also LaST Frontier Report,
supra note 1, at 18~19 (discussing the application of copyright law to computer programs).

379. Pub. L. No. 98-620, 302, 98 Stat. 3347 (1984) (codified as amended 17 U.S.C.
§§ 901-914).

380. SCPA, like the copyright statute, does not explicitly set out the standard, but the
intent of Congress is evident from the legislative history. See H.R. Rep. No. 781, 98th
Cong., 2d Sess. 1 (1984), reprinted in 1984 U.S.C.C.A.N. 5750. Courts interpreting the
SCPA have applied it. See, e.g., Brooktree Corp. v. Advanced Micro Devices, Inc., 977 F.2d
1555, 1564 (Fed. Cir. 1992). ,

381. The reverse-engineering privilege appears in SCPA at 17 U.S.C. § 906 (1988).
The intent to impose a substantial identity standard when a second comer has engaged in
legitimate reverse engineering is evident in the legislative history of this provision. See -
Explanatory Memorandum, Mathias-Leahy Amendments to S. 1201, 130 Cong. Rec. §12,
916-17 (daily ed. Oct. 3, 1984). The Court of Appeals for the Federal Circuit relied on this
history in reviewing an infringement decision applying the heightened standard. See
Brooktree, 977 F.2d at 1566-67. For a further discussion of this approach to judging
infringement, see Leo J. Raskind, Reverse Engineering, Unfair Competition, and Fair Use,
70 Minn. L. Rev. 385, 406 (1985).

382. See Raskind, supra note 381, at 398-402 (citing legislative history in support of
this idea). See also Brooktree, 977 F.2d at 1569 (affirming finding of SCPA infringement in
part because of insignificant differences in defendant’s chip design).

HeinOnline -- 94 Colum. L. Rev. 2400 1994

1994] MANIFESTO 2401

comer who improves while imitating should be less subject to sanction
than one who simply imitates is a subject worthy of further discussion.
Under an anti-cloning approach, we think improvements are unlikely to
matter. But if program compilations are subject to a substantial similarity
rule, a market-oriented legal regime might give some weight, as SCPA
does, to whether the second comer introduced improvements.

One final issue is whether to treat the migration of innovations to
remote markets or applications differently than adjacent use. Many
software innovations have broad ranges of application. Features, algo-
rithms, or subcompilations of features may migrate to domains entirely
different from those in which they originate. In the process, imitators
may transform the original innovations significantly in order to integrate
them into new contexts.

Whether a legal regime should block such migration at all, block it
for a shorter time than adjacent imitation, or only require royalty pay-
ment is an important question. It is desirable to ensure that even remote
market participants do not reap the benefits of another’s innovation with-
out contributing towards the cost of its initial development. Yet, trans-
planting innovations to a wholly different market often requires addi-
tional creativity and has less potential to affect the innovator’s own
market. Accordingly, one might decide that reuse in new applications or
remote markets should be permitted sooner or with shorter compensa-
tion periods than should reuse in applications and markets close to those
in which an innovation was originally introduced.

5.4.4 Interoperating Programs

In order for a program to interoperate with another program, it
must reproduce some or all of the other program’s compilation of inter-
face information. Whether interfaces can or should be protected by ex-
isting legal regimes has been the subject of much controversy in the
United States and abroad.383

While we have no quarrel with the U.S. copyright decisions that have
permitted reuse of interface information,?®* courts in these cases have
ignored the fact that internal interfaces are compilations of information

383. See McManis, supra note 329, at 45-50 (discussing intellectual property
protection and reverse engineering in both the US. and E.C.); Pamela Samuelson,
Comparing U.S. and E.C. Copyright Protection for Computer Programs: Are They More
Different Than They Seem?, 13 J. L. & Comm, 279, 285-92 (1994) (discussing protection
of program interfaces in the aftermath of Sega Enters. v. Accolade Inc., 977 F.2d 1510 (9th
Cir. 1992) and Computer Associates Int'l v. Altai, Inc., 982 F.2d 693 (2d GCir. 1992) and
comparing with E.C. law).

384. See, e.g., Altai, 982 F.2d at 693 (holding elements of programs constrained by
external factors such as the hardware or software with which it will interoperate are
unprotected by copyright); Sega, 977 F.2d at 1510 (ruling that functional requirements for
achieving compatibility are unprotectable by copyright).

HeinOnline -- 94 Colum. L. Rev. 2401 1994

2402 COLUMBIA LAW REVIEW [Vol. 94:2308

that require considerable creativity to produce.38> Not only are interfaces
valuable, they are also often very costly to develop and embody considera-
ble innovation. We regard internal interface compilations as unprotect-
able by copyright law because they are industrial compilations of applied
know-how, information equivalents to the gears that allow physical ma-
chines to interoperate.386 It is a separate question whether this sort of
industrial compilation should be subject to a blocking period or right of
compensation such as we recommend for behavior and other program
compilations.

There are three principal ways that firms presently achieve interoper-
ability. First, some developers publish interface specifications to enable
third party developers to construct programs that will interoperate with
their programs.387 Firms have incentives to do this when they think they
can increase sales of their software or hardware systems, which will be
more in demand if there are many programs that interoperate with their
system.

385. The argument in favor of copyright protection for internal interfaces emphasizes
that selecting and arranging program interface elements requires creativity that easily
meets the minimal creativity standard set forth in Feist Publications v. Rural Tel. Serv. Co.,
499 U.S. 340, 345 (1991). As long as a programmer’s initial choices were not wholly
dictated by function, proponents of copyright protection for interfaces argue, the
compilation is original and should be protected against copying, whether of a literal or
nonliteral nature. See, e.g., Lake et al., supra note 335.

The initial design of an interface will generally not be significantly constrained unless
standards have been promulgated. Where standards have been promulgated, there may be
relatively little opportunity for creativity in expression. See, e.g., Secure Servs. Technology,
Inc. v. Time & Space Processing, Inc., 722 F. Supp. 1354 (E.D. Va. 1989) (describing
protocol governing “form, timing, [and] order” of digital signals and thereby limiting
permissible variations). On the other hand, once an innovator has developed an interface,
the design of that interface will serve as a constraint on any developer that wants to develop
an interoperating program. See, e.g., Altai, 982 F.2d at 698-700, 714-15 (both plaintiff’s
and defendant’s programs constrained by need to interact with IBM operating systems
programs). Proponents of copyright protection for interfaces find support in Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert. denied,
464 U.S. 1033 (1984), wherein the court indicated that the desire to achieve compatibility
“is a commercial and competitive objective which does not enter into the somewhat
metaphysical issue of whether particular ideas and expressions have merged.” Id. at 1253.

386. See supra notes 35-36 and accompanying text.

387. Perhaps the bestknown early example of this was the decision by IBM to make
public the specifications for its IBM PC. See Ferguson & Morris, supra note 80, at 52,
The IBM PC was also the first deliberately ‘open’ computer architecture, a
fundamental insight that shaped the future of personal computing. From the
very start, Boca Raton [where IBM developed the PC] recognized that the best way
to make the PG the industry standard was to publish all its technical specifications
and make it easy for third parties to build add-on devices or write PC software
applications, a principle that took Apple years to understand.
Id. at 29. Of course, the publication of this information also enabled other computer
manufacturers to make IBM-compatible computers.

HeinOnline -- 94 Colum. L. Rev. 2402 1994

1994] MANIFESTO 2403

Second, even when firms do not publish their interfaces, they often
make the information available on a licensing basis.388 A firm’s willing-
ness to license its interface either with or without royalties will generally
turn on its expectation that consumers will value its products based, in
part, upon the number of programs that interoperate with them,
although royalties and license fees can be significant sources of revenue.
Firms that want fast and low effort access to interoperability information
have incentives to license it.38°

Third, firms can decompile another firm’s program, extract the in-
terface information, and then reimplement it in different code.390
Decompilation is the only route for obtaining this information when
other firms are unwilling to license their interfaces.3®! But some firms
that could license interface information choose not to do so, having de-
cided that they would rather pay the costs of reverse engineering than a
license fee.392

Decompilation and reimplementation of an interface are sufficiently
arduous processes that they necessarily entail significant delay, leaving
the firm whose interface information is being appropriated a nontrivial
head-start in the marketplace.39% As a consequence, we do not perceive

388. IBM and Fujitsu historically had a licensing arrangement by which IBM would
provide interface information to Fujitsu, subject to payment of royalties. When Fujitsu
decided to seek the same information by decompilation, IBM challenged the action. The
resulting arbitration produced a licensing arrangement under which IBM would provide
interface information to Fujitsu subject to a royalty-bearing licensing. See International
Business Machines Corp. v. Fujitsu Ltd., American Arbitration Association, Commercial
Arbitration Tribunal, Case No. 13-T-117-0636-85 (Nov. 29, 1988) (Mnookin & Jones,
Arbs.).

389. Sega and Nintendo both have large numbers of licensees who pay for the
privilege of producing games that will operate in their videogame consoles.

390. See, e.g., Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1514-15 (9th Cir. 1992).

391. Licenses may be unavailable to firms seeking the interface information in order
to develop a competitive substitute for the program containing this information, rather
than just a program that will interoperate with it.

392. Atari Games, for example, had been a Nintendo licensee, but eventually decided
it wished to continue to produce Nintendo-compatible programs without paying license
fees. It consequently decompiled the Nintendo program to learn how to make a
compatible program without Nintendo’s aid. See Atari Games Corp. v. Nintendo of
America, Inc., 975 F.2d 832, 836 (D.C. Cir. 1992).

393. On remand, the District Court in Atari offered a market-oriented rationale for
distinguishing between the lawfulness of achieving compatibility with present versions of
Nintendo games and the unlawfulness of achieving future compatibility. Had Atari limited
itself to achieving compatibility with present versions of Nintendo’s system, Nintendo
would have had lead time protection for each new release because non-licensees would
have to decompile each new version to reachieve compatibility. The court thought that
allowing a non-icensee to make a program that would achieve compatibility with future
versions would undermine Nintendo’s incentives to produce innovative hardware consoles.
See Atari Games Corp. v. Nintendo of America Inc., 30 U.S.P.Q.2d (BNA) 1401, 1407-08
(N.D. Cal. 1993). While we agree that the appropriation of interface information should
be judged by market-oriented standards, courts deciding copyright cases should not focus
on whether manufacturers of hardware consoles have enough leadtime to induce

HeinOnline -- 94 Colum. L. Rev. 2403 1994

2404 COLUMBIA LAW REVIEW [Vol. 94:2308

that market failure is presently occurring when software developers ap-
propriate interface information.

However, if decompilation technology improves substantially, there
may be a need to consider whether use of another firm’s internal inter-
face information should be blocked for a market-preserving period of
time, or perhaps be subjected to a right of compensation.3%¢ Internal
interfaces are, after all, industrial compilations requiring skilled effort to
create. A second comer who wants rapid access to them should have to
contribute toward their development expenses.

5.4.5 Add-On Software

“Add-on” software typically offers some enhanced functions to an ex-
isting program, either modifying the other program’s behavior or supple-
menting it in some way. Galoob’s Game Genie, for example, permitted
users to change certain aspects of the play in Nintendo videogames.395 A
program originally named “Sideways” permitted users of Lotus 1-2-3 to
print spreadsheet data sideways on standard-sized paper when they pre-
ferred that format to the conventional one Lotus provided.3%

To modify or supplement an existing program’s behavior, an add-on
program must be able to interact with that program. To that extent, add-
on software is a kind of interoperating program, although the extent of
interoperability needed is typically less than that required for an operat-
ing system program and its application programs. The Sideways pro-
gram, for example, had to be able to “read” file formatting information
used by the spreadsheet program, but did not need to interact with other
parts of the program.

investments in hardware innovation. See Richard H. Stern, Reverse Engineering for
Future Compatibility, 16 Eur. Intell. Prop. Rev. 175, 178-80 (1994).

394. Perhaps a market-oriented legal regime should distinguish between those who
seek only to interoperate with and those who want to develop a competitive substitute for
the target program. From a market standpoint, the competitive substitute program has a
greater potential to undermine incentives to innovate than would a complementary
interoperating program. In a market-oriented regime, the developer of a complementary
product might, for example, be permitted to enter the market sooner or more cheaply
than a direct competitor because it and the program with which it interoperates compete
in different markets.

During the debate about the European directive on legal protection of computer
programs, there was considerable discussion about whether the directive should permit
decompilation only to develop a program that would interoperate with the decompiled
program. Such a policy would have meant that a firm that decompiled another firm’s
program in order to make a competing substitute would infringe copyright. In the end,
EG policymakers decided not to make such a distinction, although it requires a somewhat
convoluted understanding of the Directive’s provisions to discern this. See Vinje, supra
note 328, at 73-76.

395. See Lewis Galoob Toys, Inc. v. Nintendo of America, Inc., 964 F.2d 965 (9th Cir.
1992), cert. denied, 113 S. Ct. 1582 (1993).

396. Lotus eventually acquired rights to this program and integrated its functionality
into 1-2-3.

HeinOnline -- 94 Colum. L. Rev. 2404 1994

1994] MANIFESTO 2405

An exclusive property rights regime might take a broad view of deriv-
ative work rights, regarding the add-ons as a market that should be re-
served to the firm whose product they modify or complement.397 Add-
ons are, after all, essentially parasitic in nature. They rely heavily on the
value of the program whose functionality they modify or enhance. Al-
most by definition, there is no market for add-on software as a stand-
alone product. Furthermore, add-on programs usually reproduce some
elements of the underlying program, such as portions of its interface or
file structures, in order to interoperate with it.

In the software industry, add-on software is very common and is
widely regarded as market- and competition-enhancing.?® From a mar-
ket-oriented perspective, the add-on program’s developer, no less than
the developer of the underlying program, must have a market incentive
for investing in cumulative innovation.3%® The Ninth Circuit took this
view in Galoob, noting that anyone who purchased Galoob’s Game Genie
would already have purchased videogames from Nintendo.?%° If the
Game Genie enhanced a user’s pleasure in Nintendo games, the court
saw no reason to interfere with this enjoyment by blocking a complemen-
tary product from the market. Yet, one can argue, from a market-ori-
ented standpoint, that the developer of an add-on program builds on the
underlying developer’s research and development and should not be en-
tirely exempt from contributions to these costs.

6 Goals and Principles for a Market-Oriented Approach to the
Protection of Innovative Technological Know-How

Having set forth the three primary factors by which to determine
whether an appropriation of program know-how arising from behavior
would induce market failure, we know when to act. We turn now to dis-
cuss the goals and principles for a legal regime that could implement this
anti-cloning approach in a technologically appropriate and market-ori-
ented manner. We conclude with a set of abstract elements that we think

397. Nintendo made such an argument in Galoob, 964 F.2d at 967-69. Even Judge
Keeton, who has otherwise taken a very expansive view of the scope of copyright protection
in programs, views add-on software as lawful. See Lotus Dev. Corp. v. Paperback Software
Int’l, 740 F. Supp. 37, 7879 (D. Mass. 1990). Had Paperback merely sold a database
product that interacted with the Lotus program, the judge would have considered it a
lawful, incremental addition to the field. However, by making a directly competing
program that had a database capability as well, Paperback had crossed the line of illegality.

398. Apart from Galooh, 964 F.2d at 965, there have been no other lawsuits
challenging the legality of software add-ons.

399. See Christian H. Nadan, Comment, A Proposal to Recognize Component Works:
How a Teddy Bears on the Competing Ends of Copyright Law, 78 Cal. L. Rev. 1633 (1990)
(taking market-oriented perspective on legality of add-on programs, which author
describes as component works).

400. See Galoob, 964 F.2d at 971; see also New York Times Co. v. Roxbury Data
Interface, Inc., 434 F. Supp. 217 (D.N_J. 1977) (copying information to develop an index to
newspaper’s indices was fair use, in part because it did not supplant the market for them).

HeinOnline -- 94 Colum. L. Rev. 2405 1994

2406 COLUMBIA LAW REVIEW [Vol. 94:2308

any new regime should include. Sections 7 and 8 will use these principles
as a basis for assessing the best option among possible legal mechanisms
for protecting program know-how. We recognize that these principles
cannot all be fully achieved in any one legal regime. Our goal was to
achieve a balance among competing or conflicting principles and to iden-
tify a regime that would satisfy as many principles as possible.

6.1 Goals and Principles of a New Regime

6.1.1 Do not try to wipe the slate clean; build on existing legal
foundations.

The idea of constructing one legal regime that could protect all as-
pects of software might be attractive from a theoretical standpoint. How-
ever, given the disruption it would cause to settled expectations, a totally
new approach to protection of all aspects of software may be infeasible.
Such a total revision may also be unnecessary because in some respects,
existing legal regimes appropriately protect software innovations without
distortion of their basic principles. Copyright law, for example, has pro-
vided a simple and effective means of deterring wholesale copying of
source and object code and of expressive texts, pictures, or audiovisual
material generated when program instructions are executed.?°! Any new
legal regime should supplement protection available from existing legal
regimes without overlapping with them.

6.1.2 Focus on solving the most serious problems.

No legal regime can solve all problems that industries may have. Nor
can a legal regime solve them perfectly. Our goal was to concentrate on a
workable solution to the most serious problems confronting the software
industry, and to avoid getting distracted by the difficult questions
presented by marginal cases.

6.1.3 Provide a well-lit playing field.

A legal regime that protects program behavior and industrial design
elements responsible for it should be reasonably predictable as to scope
and duration of protection. This will encourage investment and reduce
the potential for litigation.

6.1.4 The regime should flow from and be responsive to the nature of
the technology protected.

An appropriate legal regime for protecting the know-how embodied
in computer programs should be geared to protection of the true sources
of value in software: behavior, the industrial designs that produce behav-
ior, and conceptual metaphors.

401. See supra notes 166-168.

HeinOnline -- 94 Colum. L. Rev. 2406 1994

1994] MANIFESTO 2407

6.1.5 The regime should make legal distinctions that are technically
coherent.

If a legal regime for the protection of software innovations does not
make technically coherent legal distinctions, questions phrased in a legal
context may be impossible to answer meaningfully when presented to
technical witnesses or experts.

6.1.6 The regime should be, so far as is possible, independent of the
current state of technology.

The legal regime should not be based upon or otherwise depend in
substantial ways on the current state of technology, but should be capable
of evolving naturally as the technology itself evolves.

6.1.7 The regime should also encourage disclosure and dissemination
of program know-how, facilitating improvements, and new
applications.

A legal regime for protecting applied know-how in programs from
market-destructive appropriations should not block access to that know-
how, but merely regulate its use. There should be room to improve ex-
isting applications and to transfer know-how-to new application domains.

6.1.8 The regime should encourage product-enhancing innovations
and discourage overheated innovation.

A product-enhancing innovation is one that either improves the
product’s utility without unduly increasing its costs, or reduces its costs
without impairing its utility, or both. Overheated innovation is variation
on a product that does not materially add to its utility or advance the level
of skill in the market, but instead is motivated by the desire to appear
different in order to fit into or avoid legal categories.*°2 True innovation
suffers when manufacturers fear to invest in research and development
likely to lead to improvements or cost reductions and invest instead in
marginal differentiation.

6.1.9 A market-oriented legal regime should encourage innovation by
avoiding market failures.

We believe that innovation will arise naturally, given an opportunity
to flourish. The role of the marketplace is to provide a forum for natural
selection in the ongoing breeding of innovation. The primary function
of a market-oriented legal regime would be to prevent market failure that

402. See, e.g., Richard S. Marcovits, The Allocative Efficiency of Encouraging
Additional Real Investment in General and R&D in Particular: A Preliminary Third-Best-
Allocative-Efficiency Analysis of Various Proposed Policies (1994) (unpublished
manuscript, on file with the Columbia Law Review) (discussing policies affecting research
and development that produce inefficient investments in product variety).

HeinOnline -- 94 Colum. L. Rev. 2407 1994

2408 COLUMBIA LAW REVIEW [Vol. 94:2308

discourages investment in both long-term and short-term software
innovation.

6.1.10 A market-oriented legal regime should prevent market failure
by providing innovators with reasonable lead time.

Products imitating an innovation should not be able to arrive faster
in the marketplace than necessary to provide innovators with reasonable
incentives to invest in new or improved products. The developer of an
innovative software product may not ultimately be successful in the mar-
ketplace, but should at least have a period of unobstructed opportunity to
seek market reward before imitations can lawfully appear there.

Artificial lead time of this sort would be considerably shorter than
the duration of exclusive rights granted by patent and copyright law and
more in keeping with the lead time that classical trade secrecy law has
provided.

6.1.11 To provide an appropriate scope and duration of protection, a
market-oriented legal regime should be tuned to the “basal
metabolic rate” of the market.

Markets have a kind of “basal metabolic rate” that determines the
length of product development cycles.1%® For software, it is currently the
one or two years required to create and to test a totally new product, or
the roughly twelve to eighteen month interval required to develop and to
test the new release of a preexisting product. The market rate is an em-
pirical phenomenon dependent on a wide range of factors, including the
underlying technology (e.g., how long it takes to develop and debug a
program) and human psychology (e.g., how soon consumers will buy an
upgrade after purchasing the original program). The rate can change
depending on the state of innovation in the market, the pace of that in-
novation, and the relative maturity of the market.%°¢ The market rate
should also be considered in setting an appropriate duration for protec-
tion of program know-how.

A market-oriented regime would allow members of the relevant tech-
nical community operating within public interest guidelines to adjust the
legal regime so that it is attuned to the rate of development in the mar-
ket. This flexibility can help avert cycles of overheated and chilled
innovation.

403. The phrase is ours. For a discussion of the idea, however, see William Kingston,
The Unexploited Potential of Patents iz Kingston, Direct Protection, supra note 67, at 286.

404. Consumer pressure can contribute to the slowing of the new release cycle. The
Massachusetts Software Council reports the following discussion by a software company
CEQ: “At the beginning of our applications business, we also committed to a release every
six months. It was one of the biggest things we promoted and sold. Finally it came to a
crisis point because the product was becoming so unstable. . .. I... stood up in front of
our customers . . . and said . . . ‘we’re not going to do releases every six months any more.’
[I got a] Standing ovation.” Business Practices, supra note 265, at 19.

HeinOnline -- 94 Colum. L. Rev. 2408 1994

1994] MANIFESTO 2409

6.1.12 A market-oriented legal regime should provide an opportunity
for innovators to recoup their research and development
expenses and earn a return on their investment insofar as the
work results in valuable innovation.

A market-oriented legal regime for protecting software innovation
would provide innovators with an opportunity to recoup their research
and development expenses and earn a return on investment. It would
not, however, reward effort alone, or expenditure alone, because this has
too much potential to encourage inefficiency. The focus should instead
be on stimulating investment in productive innovation by ensuring the
innovator an opportunity for a headstart in the marketplace. One factor
that should be considered in determining a reasonable duration of pro-
tection for the know-how arising from program behavior is the industry’s
assessment of the duration that would permit recoupment of efficient ex-
penditures on research and development.*05

6.1.13 A market-oriented legal regime should avoid wasteful
reduplications of effort.

Substantial societal costs are incurred when program know-how is
kept as a trade secret. Some of these arise from the costs of maintaining
secrecy; others derive from the expenditures directed at reverse engineer-
ing or engaging in other efforts to duplicate or independently recreate
the know-how. One mechanism that allows these costs to be spread is
licensing. Insofar as software products bear their know-how on their face,
there is a problem: No one wants to pay for what they can get for free by
looking at the product as it is offered in the marketplace.°® Hence, cur-
rent legal regimes do not provide a framework for software-technology
licensing agreements that permit underlying research and development
costs to be spread.

6.1.14 Market participants should share research and development
costs in a market- and competition-enhancing way.

It may not be efficient for every participant, or would-be participant,
in the market to make substantial investments in research and develop-
ment work. But it may be both efficient and market-preserving to require
contributions to the original research and development firms that want

405. Fixing a duration for the legal protection of program innovations will inevitably
only approximate a period of recoupment that the software industry would find
reasonable.

406. See Cooter & Ulen, supra note 14, at 112-13. There is at least one social benefit
to compiled know-how borne on the face of a product: the socially wasteful expenditures
that attend trade secrecy are avoided. Eliminating these wasted costs is market-enhancing
because the market doesn’t have to pay for them again and again. But if the vulnerability
of applied know-how on the face of a product impairs the ability of its developer to recoup
costs of development and make sufficient profits to permit further innovations to occur, it
can be market-destructive as well.

HeinOnline -- 94 Colum. L. Rev. 2409 1994

2410 COLUMBIA LAW REVIEW [Vol. 94:2308

to use the fruits of others’ intellectual labor to make products that em-
body follow-on incremental innovation.

One way to accomplish this goal would be to put firms not engaging
in substantial research and development of their own to the business
choice of either contributing to the costs of any research and develop-
ment results they want to appropriate, or refraining from appropriating
those results for a market-preserving blocking period. An appropriate pe-
riod would be short enough that entrepreneurs feel they are faced with a
plausible decision about whether to license the innovation or wait for its
emergence into the public domain.

6.1.15 A market-oriented legal regime should recognize that an
innovation may be distinct from a specific product embodying
it and provide a means for innovators unsuccessful in their
own commercialization to obtain some remuneration for their
contributions to the market.

The market may recognize the value of an innovation even if it does
not value the specific product in which the innovation is first embod-
ied.%07 We wish to encourage market-enhancing innovation in any prod-
uct and in any market. To do so requires an explicit recognition that an
innovation embodied in a product, and the skilled know-how required to
make it, may be distinct from the product itself. A market-oriented legal
regime should be willing to uncouple the two and treat innovations in
applied know-how as valuable.

Many commercially important incremental innovations in software
first appeared in products that were themselves commercially unsuccess-
ful. Sometimes the market was not ripe for the first product embodying
the innovation; sometimes the innovation achieved success only when
combined with other components; and other times the innovator was sim-
ply unskilled in making the innovation into a product or in marketing it.
A market-oriented legal regime should find a way to spur valuable innova-
tion, independent of whether its developer embodies it in a successful
product.

407. Examples abound. Features of the graphical user interface introduced in Xerox
PARC’s Alto product achieved success in the marketplace when reimplemented by Apple
Computer, although Alto itself was not a successful product. See supra note 86 and
accompanying text. Lotus’s Symphony program introduced to the market in February
1984, incorporated a spreadsheet,. a graphics feature, a word processor, a database
manager, and a telecommunications feature into a single program. See Manes & Andrews,
supra note 259, at 248. Although this product failed, later “suites” of combined programs
have succeeded in the market, including Microsoft's Office for Windows, introduced in
October 1990. In 1984, IBM had internally developed a graphical user interface called
Mermaid that, combined with its CP/X86 operating system, offered a considerable amount
of the functionality that would later appear in Microsoft’s Windows 3.0 in 1990, including
multiple windows, multitasking, and virtual memory. It scrapped the program, however, in
the course of the negotiations with Microsoft that led to the development of OS/2. See
Ferguson & Morris, supra note 80, at 72-74.

HeinOnline -- 94 Colum. L. Rev. 2410 1994

1994] MANIFESTO 2411

6.1.16 A market-oriented legal regime should provide incentives to
agree rather than to litigate.

A market-oriented legal regime should create incentives for an inno-
vator and someone who wants to use the innovation to reach agreement,
rather than to litigate. Licensing among software developers is already
quite common. Developers routinely make agreements with royalty pro-
visions when they want to package another firm’s product along with
theirs or to incorporate applied know-how from another firm’s software
product into theirs.2%® A market-oriented legal regime could more di-
rectly encourage this practice, for example, by developing standard li-
censing arrangements that market participants would be free to contract
around.409

6.1.17 A market-oriented approach should be multi-faceted enough to
distinguish among different kinds of second comers.

A market-oriented legal regime might consider a number of factors
in determining whether second comers should have to pay a standard fee
to use an innovation or should be blocked from use for a reasonable
period of time. Such factors might include the relative size of the appro-
priated innovation, the manner by which the taker obtained access to it,
the degree of similarity between the works, the extent to which the sec-
ond product improved on the first, and the proximity between markets in
which the innovator and second comer were operating.#1® A multi-fac-
eted approach would distinguish among different kinds of second com-
ers, according to the market effects of their borrowings.

6.1.18 A market-oriented legal regime should, as far as practicable,
minimize the costs of obtaining protection.

We use the term “self-executing” to refer to a market-oriented legal
regime that would provide protection with a minimum of bureaucracy,
time, or overhead expense. The more self-executing a legal regime is,
the more “marketfriendly” it is likely to be. One way to achieve both
market protection and self-execution is to provide some degree of lead-
time protection automatically. Any formal requirements should be tai-
lored to what is reasonable in market terms. This is especially important
in rapidly-developing technology fields, such as software.*!

408. Microsoft Word 5.1 for Macintosh, for example, bundles grammar- and spell-
checking programs developed by independent companies in its word processing package.
Their separate copyrights are acknowledged in the same opening screen that gives notice
of Microsoft’s copyright in Word. Houghton-Mifflin is credited as the copyright owner for
the International CorrectSpell, Houghton-Mifflin Co. and Language Systems Inc. as
copyright owners of CorrectText, and Soft-Art, Inc. as copyright owner of the thesaurus
program.

409. See supra note 250 concerning the high transaction costs of licensing,

410. See supra Section 5 for discussion of these dimensions.

411. See supra note 134.

HeinOnline -- 94 Colum. L. Rev. 2411 1994

2412 COLUMBIA LAW REVIEW [Vol. 94:2308

6.1.19 A market-oriented legal regime should minimize barriers to
entry.

In curing market failure attributable to the rapid appropriability of
know-how in software, care should be taken not to induce another kind
of market failure by artificially raising barriers to entry. Innovation in the
software market will, in general, be enhanced by increasing opportunities
to participate in it.

6.1.20 A market-oriented legal regime should promote consumer
welfare.

The goal of avoiding market failure in the software industry is not an
end in itself, but rather a means for promoting consumer welfare more
generally. The benefit from efficient incentives to innovate will accrue
not only to software developers, but also to the public, because a larger
number of desirable products will be available in the market. This goal
also means that such a legal regime should be as wary of overprotecting
program innovations as it is about the underprotection problem that has
been the main focus of this Article. Indeed, the greatest threat to the
adoption of a market-oriented legal regime may come from those who
have actively strived in recent years to stretch existing legal regimes to
protect software innovations in order to avoid underprotecting software.
They may be reluctant to accept a substantially lesser duration of protec-
tion than existing regimes provide, even if this is all that is necessary to
repair market failure and promote consumer welfare. By emphasizing
consumer welfare as a principle and goal of a market-oriented legal re-
gime, however, it should be possible to overcome the temptation to
overprotect.

6.2 Abstract Elements of a New Regime

Emerging from our discussion of the principles discussed in this Sec-
tion, we reached consensus that a market-oriented framework for protect-
ing program innovations should be built around a number of abstract
elements that Professor Reichman articulates as follows:412

1. Treat industrial compilations of applied know-how as the ob-
jects of protection

2. Provide artificial lead time to overcome market failure

3. Develop a menu of user liabilities that sensibly allocate the
costs of research and development among innovators and
borrowers that constitute the relevant technical community

. Allow registration with some disclosure

. Supply pro-competitive standard ground rules

. Develop legal and organizational means to enable collective
action to enforce and adjust the liability framework

O U

412. See Reichman, Legal Hybrids, supra note 100, at 2545.

HeinOnline -- 94 Colum. L. Rev. 2412 1994

1994] MANIFESTO 2413

Reichman views these elements as useful components in a more gen-
eral approach to constructing a legal regime for dealing with the ap-
propriability of unpatentable and uncopyrightable know-how, regardless
of the medium in which such know-how is embodied.#3

7 Prototype Frameworks for a Market-Oriented Legal Regime to
Protect Software Innovations

This Section will describe a number of prototype frameworks for im-
plementing a market-oriented form of legal protection for software inno-
vations consistent with the goals and design principles discussed in Sec-
tion 6. Although no prototype was flawless, the approach described in
Section 7.5 best approximated the abstract elements for a model legal
regime and best satisfied our design principles. It would provide a short
period of blockage against cloning, and a system by which developers of
incrementally innovative software designs, such as conceptual metaphors
or algorithms, could register their innovations and make them available
for licensing.

We offer our views about each alternative we considered, on the the-
ory that some of the “negative know-how” compiled during our search for
an optimal legal regime could usefully contribute to a further discussion
of the issues.

7.1 To Each According to Its Needs

Ideally, a market-oriented legal regime would protect each software
innovation against commercial imitations just long enough to enable its
developer to enjoy the same lead time as other innovators who contrib-
uted equal value to the market. The necessary amount of artificial lead
time would depend on the amount of natural lead time already available,
given the ease or difficulty of reverse engineering. If such individualized
tailoring were possible, each innovator could count on the chance to
earn exactly the return necessary to justify its investment. Despite the
theoretical appeal of such an approach, we regard it as too unpredictable
to be workable.

7.2 Automatic Blockage of Cloning

A more plausible approach would be to protect program behavior
and other industrial design elements of programs against cloning for a
period of time sufficient to avoid market failure. Protection against clon-
ing might commence, by operation of law, from the first public market-
ing of the program embodying it.

This approach would satisfy a number of design principles. First, it
would provide protection for software innovations that existing legal re-
gimes cannot provide without the cycles of under- and overprotection.

413. See id. at 2544-45.

HeinOnline -- 94 Colum. L. Rev. 2413 1994

2414 COLUMBIA LAW REVIEW [Vol. 94:2308

Second, it is a low-cost, self-executing approach. Third, because it would
be limited to protecting against identical or near-identical copying, it
would be relatively predictable.#1* Fourth, it would directly protect
against the next most trivial means of acquiring functional equivalence
after outright duplication of code, namely, identical or substantially iden-
tical copying of program compilations and the engineering designs that
give them coherence. Fifth, because the duration of protection would be
geared to preserving lead time, it would allow compiled know-how to be
reused thereafter, promoting cumulative innovation, competitive add-
ons, and the standardization of efficient solutions.

This approach is, however, not without drawbacks. For some, auto-
matic protection only against cloning will seem too “thin” because sub-
stantially similar implementations would be unlikely to be deemed
clones. This may be troublesome not only when the two products are
competing, but also when a subcompilation migrates to a domain remote
from its original context. Migration may require enough changes in a
compilation’s composition that the migrated subcompilation may not be
deemed a partial clone even if it varied from the original only in ways
dictated by the changed context. In addition, because small software de-
velopers tend to take longer to develop their markets than bigger compa-
nies, a short period of protection may better serve the needs of large
companies than small ones. Also, without a registration system, it may be
difficult for second comers to know when the anti-cloning period expires.
Lastly, an automatic anti-cloning system will not get any compensation to
the innovator whose own commercialization effort is a failure, but who
has benefited the market by introducing an innovation that others com-
mercially exploit with success.

7.3 Automatic Anti-Cloning Protection Followed by an Automatic
Royalty-Bearing License

Reflections on these drawbacks led us to consider a two-phase pro-
tection regime that might satisfy more of the market-oriented design
principles than an anti-cloning approach alone would do. The first phase
would block clones in order to give innovators the opportunity to develop
a niche in the marketplace. In the second period, others could use the
innovation if they paid standard licensing compensation to the innovator.
The second stage would ensure that some compensation would get to
those who introduced an innovation to the marketplace when others
sought to use it, regardless of whether the innovators’ own implementa-
tion was a commercial success. The duration of such a second period
should also be short under the market-based principles discussed above.

Although automatic licenses have not been much used in the United
States, they are a common feature of industrial property laws in other

414. See supra Section 5.4.3.

HeinOnline -- 94 Colum. L. Rev. 2414 1994

1994] MANIFESTO ‘ 2415

countries.4153 Because of longstanding public policies favoring the reuse
of pubhcly accessible technical information and incremental innova-
tion,#16 it is worth keeping an open mind about an automatic license ap-
proach as a partial solution to the compiled know-how problem ad-
dressed in this Article.

Notwithstanding the theoretical appeal of this approach, practical
problems would unquestionably impede successful implementation.
Without a registration system to identify and delineate the subject matter
to be protected, it would be difficult to know when blockage periods
ended and when the automatic license period commenced. Transaction
costs for implementing the licenses would likely be high unless the law
encouraged or required licenses with standardized terms. There would
also need to be some reliable way to establish appropriate royalties for
different classes of use.

7.4 SCPA-Like, Automatic Anti-Cloning Protection Plus Registration
Approach

Semiconductor chips, like computer programs, are an information
technology that fits uneasily into the framework of traditional intellectual
property law.#17 Not surprisingly, then, SCPA reflects many of the design
principles we seek to implement for software. SCPA provides automatic
anti-cloning protection to semiconductor designs from the date of the

415. For examples, see Reichman, Legal Hybrids, supra note 100, at 2465, 2477-78
(discussing British unregistered design right and Italian engineering law).

416. See supra notes 233-239 and accompanying text.

417. When it passed SCPA, Congress decided that semiconductor designs and the
masks used as stencils to create chips were too functional to be protectable by copyright
law. It recognized that patents could not give sufficient protection to semiconductor
designs because chip design is largely an engineering enterprise, requiring skilled efforts
to make incremental improvements in selection and arrangement of functional elements,
rather than invention. See Copyright Protection for Imprinted Design Patterns on
Semiconductor Chips: Hearings on H.R. 1007 Before the Subcomm. on Courts, GCivil
Liberties and the Admin. of Justice of the House Comm. on the Judiciary, 96th Cong., Ist
Sess. 55-62 (1979) (statement of James M. Early, Division Vice President, Fairchild Camera
and Instrument Corp.). As with software, semiconductor chip designs tend to bear much
of the incremental technical innovation they embody on the face of the product sold in the
marketplace. See Copyright Protection for Semiconductor Chips: Hearings on H.R. 1028
Before the Subcomm. on Courts, Civil Liberties, and the Admin. of Justice of the House
Comm, on the Judiciary, 98th Cong., 1st Sess. 5-6 (1983) (statement of Rep. Norman Y.
Mineta). As with software, chips are very costly to develop, but once developed, their
designs are vulnerable to fast and inexpensive appropriations that undercut innovator’s
incentives to invest in innovation. See House Comm. on the Judiciary, Semiconductor
Chip Protection Act of 1984, Report to Accompany H.R. 5525, H.R. Rep. No. 781, 98th
Cong., 2d Sess. 2-3 (1984), reprinted in 1984 U.S.C.C.A.N. 5750, 5751-52. It requires, in
other words, only relatively trivial effort for a second comer to acquire functional
equivalence to an innovative chip design by copying products sold in the marketplace. See
id.; see generally Samuelson, Lessons of Chip Law, supra note 5, at 491 (citing the
disproportion in expense of development and ease of copying as main reason Congress
passed sui generis protection for semiconductors).

HeinOnline -- 94 Colum. L. Rev. 2415 1994

2416 COLUMBIA LAW REVIEW [Vol. 94:2308

first commercial distribution of a chip embodying them.*!® This protec-
tion lasts for two years unless a chip developer registers the design with
the Copyright Office.#!® The SCPA registration process, like that for
copyrights, involves only a light examination of the application before a
registration certificate issues.#20 A timely registration will extend the du-
ration of protection to ten years.#?! An additional inducement to regis-
tration is that the SCPA certificate, like that for copyright registrations, 422
constitutes prima facie evidence that the holder has SCPA rights.428
Under SCPA, others are free to use aspects of a chip compilation as long
as they do substantial independent design work in preparing their com-
peting chips.424

Although it is fair to say that SCPA protects semiconductor designs, it
does so indirectly. SCPA’s subject matter is actually “mask works,” that is,
the set of stencils or “masks” used in the manufacture of chip layers
under the technology in common use when SCPA was devised.425 A set
of “mask works” for a particular semiconductor chip design must accom-
pany the application for registration sent to the Copyright Office.426 A
registration system has worked reasonably well for SCPA because mask
works are an intermediate work-product of the manufacturing process
that can accompany the registration application.42?

418. Protection for a mask work commences on either the date it is registered with
the Copyright Office, or the date on which it is first “commercially exploited” anywhere in
the world, whichever is first. See 17 U.S.C. § 904(a) (1988).

419. See id. § 908(a).

420. See id. §908(e); cf. 17 U.S.C. §410(a) (1988) (copyright). The copyright
registration approach postpones most of the costs of examination until infringement
litigation, if any occurs. Patent issuance, by contrast, may take as long as three years and
cost thousands of dollars. The primary interest protected by the SCPA are economic and
material: promotion and creation of new technology, investment in technology, and
business certainty. Congress believed these interests were best advanced by a fast,
inexpensive system for establishing ownership rights. See Richard H. Stern, Determining
Liability for Infringement of Mask Work Rights under the Semiconductor Chip Protection
Act, 70 Minn. L. Rev. 271, 380 (1985).

421. See 17 U.S.C. §§ 904(b), 908(a) (1988).

422. See id. § 410(c).

423. See id. § 908(f).

424. See id. § 908(e); Raskind, supra note 381, at 395-98 (citing legislative history
establishing requirement that copyist expend substantial energy and resources on reverse
engineering and reimplementation).

425. See 17 U.S.C. § 902; see also id. § 901(a)(2) (defining “mask work”),

426. See id. § 908(c); 37 C.F.R. § 211.5 (1993). The choice of mask works as the
subject matter for the SCPA protection regime has been criticized because, as chip
technology evolves, masks are less frequently used, making SCPA potentially obsolete, See
Morton D. Goldberg, Semiconductor Chip Protection as a Case Study, in Global
Dimensions, supra note 6, at 329, 332-33. It would probably have been better to conceive
of the subject matter of SCPA as semiconductor chip designs and to make masks a form of
identifying material regarding the design for registration purposes.

427. Registration of chip designs also remedies some defects of a pure anti~cloning
approach. For instance, applications for registration must state the date on which
commercial exploitation commenced. This helps copyists determine when legal

HeinOnline -- 94 Colum. L. Rev. 2416 1994

1994] MANIFESTO 2417

Registration of software innovations would not be as easy to achieve
because there is no intermediate design document uniformly prepared
by software developers for either internal or external designs that could
serve as registration material. Developers of innovative programs would
be reluctant to register a design document that disclosed all of the inter-
nal design elements of their programs, information that they can now
protect as trade secrets because of the difficulties of gaining access to it by
decompilation.#2® So, although SCPA has some features that might use-
fully be adopted in a legal regime for protecting software innovations, its
registration system could be unworkable as applied to software.

7.5 Modified SCPA Approach: Some Automatic Protection
Complemented by Registration of Innovative Elements

A modified SCPA approach, tailored to market-preservation princi-
ples, might be worth considering. Such an approach might provide a
period of automatic anti-cloning protection and an opportunity to regis-
ter innovative software compilations or subcompilations in order to get a
longer period of blockage or a period of compensation under a standard
licensing arrangement. A software developer might register, for example,
a new user interface design, a macro language, a new algorithm, or the
like, without having to register the product as a whole, as is required
under SCPA. This approach may best match the design principles set
forth above.

As with SCPA,*?° registration should probably be required within a
year or two of the first commercial distribution of a product embodying
the legal regime.*3° As with SCPA,*3! the regime should employ a light,
copyright-like registration process, rather than a patentlike examination
process, although it should allow later opportunities to challenge
whether the registered material qualifies for protection.#32 This would

protection ceases. The Register of Copyrights is empowered to prescribe a form for
registration of mask works. See 17 U.S.C. § 908(c) (1988). “Form MW is designated for
use by registrants for protection under SCPA. See 37 C.F.R. § 211.4(b) (1993). Block 6 of
this form requires disclosure of the date of first commercial exploitation of the mask work.
See Form MW, reprinted in Richard H. Stern, Semiconductor Chip Protection § 3.5
(1987). Masks deposited with the Copyright Office also make it easy to know with certainty
the exact protected design. Finally, registration also makes it easier to record transfers of
intellectual property rights in chip designs. See 17 U.S.C. § 903 (1988).

428. See supra note 88-91. :

429. See supra note 419 and accompanying text.

430. Prompt registration produces an objective evidentiary record of the identity of
the mask work as of the date of registration. See Stern, supra note 427, § 3.1.

431. See supra note 420 and accompanying text.

432, This might be done in litigation, as is the case in copyright law, see, e.g., Alfred
Bell & Co. v. Catalda Fine Arts, Inc., 191 F.2d 99 (2d Cir. 1951) (defendant challenging
originality of plaintiff’s work in infringement litigation), or by permitting opposition to
registration application, as is common in trademark law, see 15 U.S.C. § 1063 (1988).

HeinOnline -- 94 Colum. L. Rev. 2417 1994

2418 COLUMBIA LAW REVIEW [Vol. 94:2308

minimize the up-front costs associated with gaining protection, in accord-
ance with the market-oriented principles discussed above.33

As with SCPA, registration might bring with it a longer period of
blockage, or alternatively, an automatic royalty-bearing license available
on standard terms after expiration of the unregistered design protection
right.43¢ Of the two alternatives, we favor the latter because it would re-
move the transaction costs of licensing. Reasonable fixed fees would en-
courage second comers to compensate the innovator rather than dupli-
cating effort. They would also prevent the innovator from getting hit by
its own hardball in licensing negotiations.

7.6 A Market Segment Approach

Exclusive rights regimes do not generally link the scope or duration
of protection available to a qualifying innovation with the market proxim-
ity of a second comer’s product.#3® However, a market-oriented legal re-
gime for protection of industrial designs in software might do so. Thatis,
a second comer’s ability to enter the market might be regulated accord-
ing to how close the second comer’s market is to the innovator’s market.

In prior work, Professor Reichman has pointed out that crafting an
appropriate scope for derivative work rights in an industrial property law
is a very difficult problem.#?¢ Granting very broad derivative work rights
can unduly impede competition in the general products marketplace.
On the other hand, providing no means for control over derivative uses
of a technical innovation may keep investment incentives below optimal
levels. Regulating use of the innovation by market segment might pro-
vide a mechanism with which to achieve the needed balance.

An innovator’s most immediate concern is to enjoy the advantage of
its innovation in the market for its product. A second comer in the same
market threatens the first comer’s lead time advantage in a much more
immediate manner than a second comer in an adjacent market. How-
ever, once it has established a niche in the market for its first product, an

433. See supra note 411 and accompanying text.

434. See infra notes 486—487 and accompanying text. An electronic repository of
registered materials might, in a networked environment, accomplish licensing on standard
terms electronically, thereby minimizing transaction costs. Section 8.3.2 will give further
consideration to how electronic repositories of software and software components already
in existence on the Internet might evolve to become exchanges for transactions in
registered software components.

435. Trademark law takes market segment into account in that goods bearing the
name of a first comer’s product are generally regarded as noninfringing of trademark
rights if the second comer’s product operates in a market remote from that of the first
user. See, e.g., McGregor-Doniger Inc. v. Drizzle Inc., 599 F.2d 1126, 1134-35 (2d Cir.
1979) (finding no infringement between expensive women’s coats and inexpensive golf
Jjackets).

4386. See Reichman, Electronic Information Tools, supra note 5, at 457-58 (arguing
that copyright law can control too much derivative use and traditional rules governing
industrial tools too little).

HeinOnline -- 94 Colum. L. Rev. 2418 1994

1994] MANIFESTO 2419

innovator may perceive opportunities to reuse the innovation in adjacent
markets. Thus, a second comer’s adoption of the innovation in an adja-
cent market would have some potential to undermine the innovator’s
ability to use the innovation in adjacent markets. Because of this, some
regulation of adjacent markets may be warranted. If, however, the sec-
ond comer’s market is very distant from the innovator’s market, the inno-
vator is unlikely to look to it as a way of recouping its research and devel-
opment expenses. Consequently, the second comer’s use of the
innovation in that market may not have market-destructive effects and
should be lightly regulated, if at all. Derivative uses of the innovation in
remote markets might be blocked for a shorter period of time, or might
be subject to an automatic license rather than a lead time blocking
period.

Market segment might also affect the degree of similarity required to
trigger liability. When an innovation in software migrates to a remote
market, it will often need to be adapted to its new environment and may
not be identical or substantially identical to the embodiment in the inno-
vator’s product even if it accomplishes exactly the same behavior.#3? An
adjustment in scope of protection might be needed to take account of
differences attributable to the different domain, assuming one desired to
give an innovator some opportunity to be the first to take the innovation
to remote markets or receive some compensation when such a migration
occurred.

This approach would satisfy some of our market-oriented design
principles better than the general anti-cloning automatic protection re-
gime discussed above. Yet, such a graded protection scheme might be
difficult to implement. A market segment approach would be more un-
certain than a standard blockage term, independent of market seg-
ment.38 There are, however, some successful legal regimes that base im-
portant legal distinctions on market segment concepts.*3® Market
proximity may be an appropriate factor to consider in setting standard-
ized royalties for reuse of a registered innovation, especially if industry-
wide blanket licenses emerge to implement a liability regime.

437. See supra, text accompanying notes 382-383.

438. Products do not always stay in their original markets. The Sideways program, for
instance, was first introduced in an adjacent market to Lotus 1-2-3, but was later
incorporated into the Lotus product.

439. Unfair competition law has often taken market segment into account. See, e.g.,
International News Serv. v. Associated Press, 248 U.S. 215, 239-40 (1918) (applying
different rule to use by direct competitor than to use by public); United States Golf Ass'n v.
St. Andrews Sys., Data-Max, Inc.,, 749 F.2d 1028, 1038-40 (3d Cir. 1984) (finding
appropriation by indirect competitor lawful). The same is true for trademark and dilution
law. See, e.g., Mead Data Cent., Inc. v. Toyota Motor Sales, U.S.A., Inc., 875 F.2d 1026,
1031-32 (2d Cir. 1989) (holding that “Lexus” automobiles will not harm “LEXIS”
trademark legal database). Antitrust laws also make distinctions on the basis of market
segment.

HeinOnline -- 94 Colum. L. Rev. 2419 1994

2420 COLUMBIA LAW REVIEW [Vol. 94:2308

7.7 An Improvements-Oriented Approach

We also considered an approach that would differentiate between
those who made improvements to an innovative program compilation de-
rived from another firm’s product and those who imitated the compila-
tion without making improvements. One might, for example, let an im-
prover come to market sooner than one who copied an equal quantum
but made no improvements. Alternatively, one could block the copier
while allowing the improver to license for a standardized fee.

A reason to distinguish between them is that imitations generally
only increase the supply of products embodying the innovation and con-
tribute to price competition. Improvements, on the other hand, benefit
the market because they elevate to some degree the overall level of skill in
the technical community.440

As indicated above, giving consideration to improvements would
probably be desirable if a substantial similarity standard, rather than a
substantial identity standard, was selected as the standard by which to
judge when a second comer had unfairly interfered with the market op-
portunities of an innovative software developer.44! However, although it
is often easy to tell that a second program improves on the original, %42 in
some instances it can be difficult to say whether differences from the orig-
inal are improvements or merely attempts to avoid liability.443 Of course,
the market will generally determine which differences are improvements:
consumers will favor an improved version. This measure, however, does
not easily distinguish between substantive improvements and the price
improvement that all clones bring to the market. However, the fact that
improvements are not readily distinguishable from mere differences sug-
gests that this standard could be somewhat troublesome. %44

8 Alternative Courses of Action

Policymakers have at least three near-term options regarding legal
protection to computer program innovations. One is to do nothing and
let the cycles of under- and overprotection from existing legal regimes
play themselves out. These cycles will be harmful to the software industry
and consumers, but the industry may well be strong enough to weather

440. See, e.g., Reichman, Legal Hybrids, supra note 100, at 253940, 2548-50.

441. See supra notes 375-377 and accompanying text.

442. Lotus 1-2-3, for example, was a significant improvement over VisiCalc. See, e.g.,
Barr, supra note 243, at 169.

443. For example, it is unclear whether to regard Borland’s display of the Lotus
command hierarchy by pull-down menu, rather than by a two-line moving cursor menu at
the top of a screen, as an improvement or a difference for difference’s sake.

444. On the other hand, we observe that SCPA takes improvements (or lack of
improvements) into account in judging whether a similar semiconductor design should be
considered an infringement. A second comer who makes improvements to a
semiconductor design is unlikely to be found an infringer unless its chip is substantially
identical to the original. See supra note 382 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2420 1994

1994] MANIFESTO 2421

the law’s inadequacies. A second is to make minimal changes in the law
to address the most pressing underprotection problem facing software
developers: the lack of protection against cloning of program behavior
and other industrial design elements of software. The third option—
which we recommend—would give serious consideration to establishing
a registration-based system that would complement anti-cloning protec-
tion to ensure that innovators would receive contributions from those
who wish to reimplement their innovations.

8.1 Doing Nothing

While doing nothing is not the option we recommend, it is worth
noting that existing law does provide meaningful protection to some
commercially valuable aspects of programs. Copyright protects against
the most market-destructive appropriations of program behavior, i.e., ex-
act duplication of code.##5 Copyright also protects against appropriation
of expressive displays of text and graphics produced when program in-
structions are executed.*#®¢ Patent and trade secrecy law provide some
important supplemental protection to software developers.447

It is understandable that many are satisfied with results achieved
under existing legal regimes. The software industry is highly competitive
and innovative, both domestically and internationally. Moreover, it is
also growing rapidly. Proponents of the status quo suggest that existing
legal regimes be given additional time to evolve. If experience proves
that more legal protection is needed for programs, they say, there will be
time to pass it then. Those who have only recently finished the very ardu-
ous struggle to gain international consensus on legal protection for com-
puter programs through copyright law would like to believe that the de-
cades-old debate on this subject is at long last definitively resolved.

Our response is two-fold. First, we have shown that existing legal
regimes cannot evolve to provide appropriate protection for software in-
novations because existing regimes and the valuable innovations embod-
ied in programs are fundamentally mismatched.**® Second, we have
shown that the present equilibrium is more fragile than it seems. United
States policymakers revealed how fragile they consider the equilibrium to
be by their sharply negative response to the recently proposed amend-
ment to the Japanese copyright law that would have permitted decompila-
tion of software (a proposal, ironically enough, consistent with United
States case law developments). Both the United States Trade Representa-
tive and officials of the Commerce Department complained that the
change would permit Japanese companies to quickly reproduce software

445, See supra notes 285-286 and accompanying text.
446. See supra notes 164-171 and accompanying text.
447. See supra notes 88-90 (trade secrecy), 220 (patents) and accompanying text.
448. See supra notes 117-189 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2421 1994

2422 COLUMBIA LAW REVIEW [Vol. 94:2308

that they would be unable to write independently.#4® United States offi-
cials reacted similarly when the European Council was considering its di-
rective on the legal protection of computer programs.4>° Furthermore,
several factors may contribute to a destabilization of the current situation:
(1) the current trend in court decisions in software copyright cases of
filtering out valuable industrial design elements of programs may em-
bolden cloners to re-enter the software market;451 (2) decompilation
technology may improve enough to make it trivially easy for competitors
to acquire the industrial design of program internals that today can, for
the most part, be kept secret;*2 and (3) the issuance of a large number
of questionable patents for software-related ideas may impede competi-
tive development and follow-on innovation in the software industry.453
Moreover, the trend in United States case law, giving programs a very
“thin” scope of copyright protection, could influence the interpretation
of copyright protection for programs on a worldwide basis. If so, the
United States may, in the not too distant future, be leading an effort to
gain another international consensus about software protection.45¢ In
anticipation of this possibility, the Article aims to start a discourse about a
proper framework for providing additional legal protection to software
innovations.

8.2 The Minimal Change Option: Anti-Cloning Protection

Because of their vulnerability to trivial acquisitions of equivalence,
externally discernible compilations of applied program know-how, such
as behavior and user interfaces, may need some artificial lead time that
classical intellectual property regimes do not provide. Although develop-
ment cycles for programs provide some natural lead time to those who
introduce innovative behavior and user interfaces to the market, this lead
time may be inadequate to the needs of the industry.#>> These compila-
tions should be protected from commercial appropriations that are de-
structive of lead time, including protection against clones, near-clones,
and partial clones. Although the need for legal protection against the
cloning of internal elements may be less immediate in view of the current

449. See, e.g., T. R. Reid, A Software Fight’s Blurred Battle Lines: U.S. Computer
Companies Are on Both Sides as Japan Considers Copyright Law Changes, Wash. Post, Jan.
11, 1994, at D1. Pressure from the United States was so strong that the Japanese proposal
was dropped.

450. See Vinje, supra note 328.

451. See supra notes 204-209 and accompanying text,

452, See supra notes 111-116 and accompanying text.

453. See supra notes 221-225 and accompanying text.

454. United States trade negotiators cannot reasonably expect to persuade other
nations to construe copyright for programs more broadly than their own courts do. Thus,
if supplemental protection is needed for software, a new consensus will have to be
cultivated in the international arena.

455. See supra notes 233241 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2422 1994

1994] MANIFESTO 2423

difficulties of decompilation,*>® we recommend taking a more forward-
looking approach and regulating these compilations under the same anti-
cloning approach.

Because a market-oriented legal regime for a fastmoving technology
like computer software should minimize bureaucracy, protection against
cloning should arise automatically by operation of law from the first com-
mercial distribution (or public exhibition) of the program embodying
it.%57 Protection against cloning should last long enough to give develop-
ers sufficient lead time to develop a niche in the market, but not so long
as to impede the incremental development of technology or the creation
of new de facto standards in the marketplace,%58

We note that a number of countries have recently adopted or pro-
posed short terms of protection (generally three years or less) for unreg-
istered designs of industrial products.®5® A concept of this sort might
usefully be adopted for protecting program compilations, at least insofar
as there is some minimal creativity in the compilation (that is, it does not
consist entirely of standard or commonplace elements arranged in a stan-
dard or commonplace way).460

Anti-cloning protection of the sort we recommend for programs
could be implemented by legislation or by common law. In other coun-
tries, unfair competition law has served as a breeding ground for new
forms of intellectual property protection.?6! The misappropriation
branch of unfair competition law, particularly as manifested in Interna-
tional News Service v. Associated Press (INS),%62 is a possible foundation on
which a common-law form of anti-cloning protection for software could
be built.

INS, oddly enough, anticipates the critical legal protection problem
of information-based economies: the vulnerability of costly-to-develop
and commercially valuable information products to rapid, market-de-

456. See supra note 204 and accompanying text.

457. See supra section 7.2.

458. See supra notes 368-371 and accompanying text.

459. See Reichman, Legal Hybrids, supra note 100, at 2464-65.

460. Like SCPA, an automatic anti-cloning regime for software innovation should not
provide protection to designs that are staple, commonplace, familiar, or minor variations
on staple designs. See 17 U.S.C. § 902(b) (1988).

461. See Walter J. Derenberg, The Influence of the French Code Civil on the Modern
Law of Unfair Competition, 4 Am. J. Comp. L. 1, 3—4 (1955). Prior to the amendments to
the copyright statute that added sound recordings to the subject matter of copyright,
unfair competition law also protected sound recordings in the United States. See Howard
B. Abrams, Copyright, Misappropriation, and Preemption: Constitutional and Statutory
Limits of State Law Protection, 1983 Sup. Ct. Rev. 509, 518-24 (discussing early cases
applying misappropriation doctrine to sound recordings).

462. 248 U.S. 215 (1918). For an effort to modernize and reconstruct the INS
misappropriation tort as an appropriately limited legal doctrine based on restitution
principles, see Gordon, supra note 101, at 266-73.

HeinOnline -- 94 Colum. L. Rev. 2423 1994

2424 COLUMBIA LAW REVIEW [Vol. 94:2308

structive copying.46® Associated Press brought suit against International
News Service because International News Service was appropriating news
from early editions of Associated Press-affiliated newspapers and publish-
ing it in their own affiliated newspapers that competed directly with the
Associated Press papers.46¢ To preserve incentives for Associated Press to
invest in news-gathering, the Supreme Court decided to give it lead time
protection in the commercial distribution of the news.465 Software devel-
opers, too, need some lead time before competitors can appropriate com-
piled know-how from their products. It is conceivable that the common
law could evolve anti-cloning rules for software innovations, employing
market-oriented principles akin to those applied in INS,%65 and refined to
reflect the primary dimensions set forth in Section 5. Software develop-
ers might, however, prefer to go directly to Congress to get statutory anti-
cloning protection.

If the United States adopts anti-cloning rules for software, this expe-
rience could lay the groundwork for reaching an eventual international
consensus that could either be subsumed within the Paris Convention
under article 105is, adopted by a GATT/TRIPs panel as a norm of inter-
national trade, or included in a revision of the GATT/TRIPs agree-
ment.#67 One of the lessons of the twentieth century has been that legal

463. In recognition of the market-destructive potential for misappropriations of data
in electronic databases, the European Council is considering adoption of a directive to
protect data against unfair extractions. See Amended Proposal for a Council Directive on
the Legal Protection of Databases, 1993 O.]. (C 308) 1, 8.

464. Associated Press (AP) news could not be protected as a trade secret once it had
been published in early editions of AP newspapers or posted on public bulletin boards in
AP offices. Nor could it be protected by copyright law because, at the time, AP papers did
not copyright their papers. Even if they had, that would not have protected the news as
such from appropriation because news is beyond the scope of copyright. See INS, 248 U.S.
at 233-35.

465. The Court enjoined International News Service from misappropriation of AP
news until the commercial value of the news had passed away. See id. at 245-46.
International News Service could, however, use AP news to get “tips” on newsworthy
stories. See id. at 243-44. Courts employing market-oriented principles in software
disputes might also look to cases interpreting non-competition agreements and limiting
them to a reasonable duration or scope as useful precedents. See, e.g., Telson Corp. v.
Hoffman, 720 F. Supp. 657, 665-66 (N.D. Ill. 1989) (discussing court discretion to “blue
pencil” terms when noncompetition agreements are overbroad).

466. The Sears-Compco tradition favoring free competition as to unpatented,
uncopyrighted innovation has, however, historically limited judicial developments of this
kind. See Sears, Roebuck & Co. v. Stiffel Co., 376 U.S. 225 (1964); Compco Corp. v. Day-
Brite Lighting, Inc., 376 U.S. 234 (1964) (striking down the use of state unfair competition
law to protect unpatentable, uncopyrightable designs). The Supreme Court recently
reaffirmed the tradition, striking down a Florida statute that forbade use of plugmolding
processes in the manufacture of boats and their component parts. See Bonito Boats, Inc. v.
Thunder Craft Boats, Inc., 489 U.S. 141 (1989).

467. Reichman predicts that GATT/TRIPs will need to be amended to deal with a
number of scope of protection issues, as well as with issues that today tend to be dealt with
through legal hybrid regimes, such as the EU’s proposed database directive, see supra note
463, and industrial designs. See Reichman, GATT/TRIPs, supra note 146, at 173-81. See

HeinOnline -- 94 Colum. L. Rev. 2424 1994

1994] MANIFESTO 2425

institutions, including intellectual property laws, must adapt to shifts in
economic structure, such as the transition from largely manufacturing-
based economies to information economies.

In the event Congress or the courts devise an appropriate market-
oriented legal regime to protect software innovation, policymakers
should also reassess the need for software patents. The recent interest of
some software developers in patents may arise less from a conviction that
patents are well-suited to the industry’s needs, than from a sense that
copyright alone may not provide sufficient protection.458 We believe that
the software industry would favor the market-oriented, lead time ap-
proach we propose because it matches so well the environment in which
the industry has thus far innovated and prospered.#6®

If policymakers decide that patents should have a role in the protec-
tion of software innovations, they should encourage continuation of the
reforms that the Patent and Trademark Office has undertaken to remedy
the deficiencies in its standards and processes for dealing with software
innovations.*’° In addition, Congress should amend the patent law to
require publication of patent applications within eighteen months of fil-
ing. Prompt publication may prevent the issuance of patents for software
ideas that are already in the prior art or make only minor advances upon
it.#71 Congress should also consider opening up the reexamination pro-
cess.#72 Software developers in possession of prior art that they think
defeats a patent should be able to do more than send the information to
the Patent and Trademark Office with a humble request for reexamina-
tion. These reforms and legislative actions are needed in order for the

" software industry to gain confidence in the soundness of the patent sys-
tem as applied to software.*’3

also Paul E. Geller, Intellectual Property in the Global Marketplace: Impact of TRIPS
Dispute Settlement?, 28 Int’l Law. 1, 14-15 (1994) (discussing Article 10dis of Paris
Convention and possibility that GATT/TRIPs panel might decide that certain forms of
unfair competition have become norms of international trade within scope of current
GATT/TRIPs agreement).

468. See supra notes 222-225, 302 and accompanying text.

469. See supra notes 242-246 and accompanying text.

470. See supra note 224 and accompanying text.

471. See S. 1524, 103d Cong., 2d Sess. (1994) (Patent Simplification Act of 1994).

472. See 35 U.S.C. §§ 301, 307 (1988). These provisions permit someone who has
information about patents or printed publications bearing on the validity of an issued
patent to request a reexamination of the patent in light of the cited prior art. If the
Commissioner of Patents finds that no substantial question of patentability exists, he or she
will deny the request for reexamination. This decision is final and unappealable. If the
Commissioner decides that such a substantial question does exist, the patent owner can
provide a written statement in support of the patent. The person requesting the
reexamination may then respond to this statement. Although the Patent and Trademark
Office can hold a hearing on a reexamination matter, the statute does not contemplate an
opportunity for the requesting party to participate. The United States has recently
committed itself to broadening its reexamination process. See, e.g., Teresa Riordan, U.S.,
. Japan In Accord on Patents, N.Y. Times, Aug. 17, 1994, at D1, D18.
473. See supra notes 134, 221-223 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 24251994

2426 COLUMBIA LAW REVIEW [Vol. 94:2308

8.3 A More Forward-Looking Approach: Investigation of a
Registration and Automatic Licensing System for Software
Innovations

Although anti-cloning legislation will take care of the industry’s most
pressing protection need, it is only a partial solution. A broader solution
would include adoption of a registration system for innovative compila-
tions of applied know-how embodied in software. This system would facil-
itate development of a repository of state-of-the-art software that would be
of assistance in the evolution of software engineering, as well as poten-
tially provide an exchange through which low-cost transactions about re-
use of software innovations could occur. A registration system of this sort
might also provide incentives for software developers to disclose high-
level descriptions of innovative algorithms and other internal design ele-
ments of software that today are kept secret. Registration would provide a
way for innovators to get compensation for disclosed innovations without
undergoing the lengthy, expensive, and cumbersome process of
patenting.

One of the challenges is to conceive a legal framework that would be
adaptable as the technology and markets for software evolve. The next
subsection raises a number of future-directed issues.

8.3.1 Evolution of Technology May Affect the Legal Landscape

Future technological developments will almost certainly disrupt
whatever equilibrium exists today or develops in the near term. Some
developments may make it easier for second comers to acquire behavioral
equivalence with an innovator’s software product. Insofar as this occurs,
there will be a need to adjust the legal regime to ensure that market-
destructive appropriations do not go unremedied.

Improvements in technological tools for software development?74
may, for example, so speed up development cycles as to force adjustment
of the lead time protection period for some aspects of software, such as
features, that under current conditions may have relatively adequate nat-
ural lead time.

Decompilation technology may also advance to the point that all of
the know-how embodied in program internals is as easily discerned as if it
were published on the surface of the product.#?5 If this occurs, the rules
governing decompilation, as well as innovations in interfaces, algorithms,
and other internal design elements of programs, might need to be
rethought to ensure adequate lead time protection for them.

474. See, e.g., Gene Forte & Ronald J. Norman, A Self-Assessment by the Software
Engineering Community, Comm. ACM, April 1992, at 28 (discussing goals of computer-
aided software engineering).

475. See supra notes 114-116 and accompanying text.

HeinOnline -- 94 Colum. L. Rev. 2426 1994

1994] MANIFESTO 2427

Technological means for protecting digitized intellectual property
are also likely to improve.*’® One positive result of this development will
be to lessen the need for the law to protect the innovations they embody.
But technological developments for protecting intellectual products may
have unsettling effects on the legal equilibrium as well. Such technology
might, for example, make any legal rules about decompilation as a means
of gaining access to internal program know-how obsolete.#’” The chal-
lenge could come to be how to induce firms to license internal program
know-how, especially interface information, so that competition in devel-
opment of interoperable systems could continue without socially wasteful
duplications of effort.478

Technology may also affect the nature of software markets. Technol-
ogies for controlled access to computer programs through networks may,
for example, open up markets for computer programs that are not based
on the distribution of copies (which is what copyright law knows how to
regulate), but rather controlled access to executable uses of them.#”® A
market-oriented legal regime for programs might provide default rules
for these transactions as well.

8.3.2 Electronic Repositories Can Become Software Exchanges

Evolution of software technology may open up a number of opportu-
nities for electronic markets, with very low transaction overhead, as a
means for distribution of and billing for commercial uses of software in-
novations.*8% Under a system that provided a low-transaction-cost means
for obtaining compensation, innovators in software would have incentives
to favor reuse of their innovations,*?! because they would be guaranteed
revenue for each reuse.

Electronic markets for software may evolve out of electronic reposito-
ries of reusable software components that already exist.#82 Some firms

476. See, e.g., Proceedings, Technological Strategies for Protecting Intellectual
Property in the Networked Multimedia Environment, J. Interactive Multimedia Ass’n, Jan.
1994 [hereinafter Technology Proceedings].

477. 1t might, for example, thwart the intent of the European software directive that
forbids contractual restrictions on decompiling necessary to achieve interoperability. See
EC Directive, supra note 7, at art. 6.

478. See supra Sections 6.1.7 and 6.1.13.

479. See Marvin A. Sirbu, Internet Billing Service Design and Prototype
Implementation, in Technology Proceedings, supra note 476, at 67.

480. A number of commentators have begun to see that digital networks may make
automatic licensing possible. See, e.g., Zentaro Kitigawa, Copymart: A New Concept—An
Application of Digital Technology to the Collective Management of Copyright, in WIPO
Worldwide Symposium on the Impact of Digital Technology on Copyright and
Neighboring Rights 189 (1993) (suggesting network markets in both copies and
copyrights). See also Finding a Balance, supra note 2, at 161-79 (discussing difficulties
attending protection of digital information).

481. See, e.g., Sirbu, supra note 479.

482. In April 1991, the National Program for High Performance Computing and
Communications sponsored a workshop entitled “Toward a National Software Exchange”

HeinOnline -- 94 Colum. L. Rev. 2427 1994

2428 COLUMBIA LAW REVIEW [Vol. 94:2308

have developed repositories of reusable code for particular functions.483
Some have developed electronic repositories of more abstract compo-
nents of software, such as algorithms.%8¢ Some reuse repositories have
been developed by private firms for internal use only; others have been
developed with government funds and are more widely accessible.85
Further growth of these kinds of repositories is foreseeable as digital net-
works expand.

The electronic repositories of algorithms that already exist on the
Internet tend to be libraries of publicly known algorithms. Users of these
libraries can both browse and download algorithms from them.*%6 These
repositories could also evolve into software exchanges. If this occurred,
those who wanted to be compensated for commercial uses of their inno-
vative algorithms might register them with the repository that could then
make them available on an automated licensing basis.

The developer of an innovative algorithm could, for example, send
the algorithm to an electronic repository. The repository could run a
search of its collection (and perhaps those of other repositories) to deter-
mine if the algorithm was already present.%87 If not, the registration
would be accepted, subject to defeasance if representations made at regis-
tration were later determined to be false. The algorithm could then be
indexed and added to the repository.

that aimed to assist existing and future electronic repositories of software and software
components to become software exchanges. See Michael Raugh, NASA Ames Research
Center, Examples of Service Components for a National Software Exchange: A Position
Statement (1991) (on file with the Columbia Law Review).

483. See Bruce D. Nordwall, Reusable Software Can Reap Big Savings in Avionics,
Aviation Wk. & Space Tech., Nov. 16, 1992, at 51; Software Reuse Library System, Defense
Elec., Oct. 1992, at 16.

484. See Neil A. Maiden & Alistair G. Sutcliffe, Exploiting Reusable Specifications
Through Analogy, Comm. ACM, April 1992, at 55.

485. See, e.g., James Baldo & Craig A. Will, Strategy and Mechanisms For
Encouraging Reuse in the Acquisition of Strategic Defense Initiative Software, Institute for
Defense Analyses Paper P-2494, at vii (June 1990) (reporting that most software reuse
occurs within firms).

486. Netlib is an electronic repository of algorithms established at the Oak Ridge
National Laboratory. It can be accessed through Internet at netlib ornl.gov. See Jack
Dongarra, Lessons Learned from Netlib, Address Before the NASA Ames Research Center
Conference: Towards a National Software Exchange (Apr. 10, 1991). For access
information, see Richard Morin, More Math Madness, UNIX Rev., May 1994, at 93.

487. We envision electronic software component repositories as private businesses,
rather than as part of a government operation. We expect they would operate very much
in the manner that copyright collectives do today in setting standard terms and conditions
for certain uses of items in the repertoire. To maintain a central national registration
system, there might still be a government-run entity to which innovators might apply
directly or through the repository which they choose as a licensing agent. Incentives to use
the repository as a licensing agent might arise from a desire to avoid the licensing regime
that the government might impose on those not making other arrangements, as happens
now with “Harry Fox licenses.” See supra note 249,

HeinOnline -- 94 Colum. L. Rev. 2428 1994

1994] MANIFESTO 2429

One possible licensing procedure would be to allow registrants to set
their own terms. Another would be an advisory body to create a standard-
ized license. A third might be to have some period in which the regis-
trant could set the terms, and a later period in which the repository’s
standard terms would apply. Upon expiration of the automated license
term, the algorithm would become a component of the public library,
available for use without restriction. Some users of the repository might
subscribe only to the public library; others might subscribe to the com-
mercial exchange. Subscription levels could be geared to the desired
level of use.

A system of this sort would have the advantage of enhancing the pub-
lic’s access to algorithms, adding to the storehouse of knowledge avail-
able to software engineers, and providing a means for innovators to get
compensauon We do not underestimate the complexities of developing
an appropriate set of terms or duration for such a licensing scheme.
Neither do we view this as an insuperable obstacle, however, if the will
exists to envision and create new types of markets for software innova-
tions. We note that the music industry has evolved standard licensing
arrangements that, to some extent, parallel the standard licensing ar-
rangements we suggest for software.488

Conclusion

The principal goal of this Article has been to make manifest certain
important attributes of computer programs, to clarify how they are devel-
oped, and to explore what kind of industry and market has emerged for
their distribution. We feel that such an elucidation is essential for mak-
ing appropriate judgments about legal protection for computer
programs.

Existing law has principally focused on only one characteristic of pro-
grams: their texts, that is, the statements and instructions that can be
used in a computer to bring about certain results. Virtually all nations
have recognized the textual character of program code in deciding to use
copyright law to protect it. Copyright is proving to be an effective and
uncontroversial means for protecting program code from exact
duplication.

Existing legal regimes have, however, found it difficult to recognize
and deal appropriately with other characteristics of computer programs.
Our review of some of the prominent software copyright cases shows that
the real issues in controversy have sometimes been obscured by the issues
that copyright doctrine seems to demand. We contend that the real dis-
pute in the “look and feel” cases, for example, was not about the arrange-

488. See Bernard Korman & I. Fred Koenigsberg, Performing Rights in Music and
Performing Rights Societies, 33 J. Copyright Soc’y 332 (1986); see also Finding a Balance,
supra note 2, at 36 (suggesting that new copyright collecting entities may be needed for
digital information products).

HeinOnline -- 94 Colum. L. Rev. 2429 1994

2430 COLUMBIA LAW REVIEW [Vol. 94:2308

ment of words, icons, or the like—elements of user interfaces that have
doctrinal significance in copyright law—but about the lawfulness of de-
veloping a program that imitates another program’s behavior.

We understand the temptation to use copyright law to protect behav-
ior. Behavior is the most valuable aspect of programs; its development is
costly and intellectually demanding. It can be rapidly imitated by some-
one who does not incur the same level of research and development costs
as the innovator because the know-how embodied in it is borne on the
face of the software product. A skilled engineer need only study the pro-
gram in operation to know how to create a functionally indistinguishable
product. There might well be too little incentive to develop innovative
program behavior if clone products could appear very quickly on the
market. However, protection of useful program behavior by copyright
law contravenes both its traditional principles and explicit provisions of
the statute that embodies them. Copyright protection would also provide
such a long period of protection to useful behavior as to bring about
market-destructive effects of a different sort, harming consumer welfare
by banning for seventy-five years functionally indistinguishable products,
having independently created texts.

Similarly, the controversy over decompilation is not really about an
intermediate copy of the program code that occurs in the decompilation
process. The focus on intermediate copying derives from the fact that
copying is doctrinally significant in copyright law. The real concern is
that valuable internal design elements that can be discerned through
decompilation (such as algorithms and information necessary to permit
programs to interoperate) are potentially vulnerable to rapid copying
that patent and copyright cannot effectively rectify or prevent, so long as
the imitator independently develops a program with a different text.

Here, too, we understand the temptation to use copyright law to stop
potentially market-destructive appropriations of the know-how borne
near the surface of software products, i.e., in the industrial design that
produces efficient behavior. Once revealed by decompilation, the com-
piled know-how in internal program design cannot be effectively pro-
tected by trade secrecy, copyright, or patent law. If copyright law were to
be used to prevent decompilation, the uncopyrightable, unpatentable
know-how embodied in program internals could be kept as a trade secret.
But this would transform copyright into a trade secrecy law. Courts and
policymakers have rightly recognized the overprotective potential of us-
ing copyright law to obtain de facto monopolies to unpatentable techni-
cal innovation.

We propose to remedy market-destructive appropriations of pro-
gram behavior and the industrial designs aimed at producing efficient
program behavior through a period of automatic anti-cloning protection
for these innovations. The period should be long enough to give effi-
cient incentives to invest in the development of innovative software, yet
short enough to avert the market failure that would result if second com-

HeinOnline -- 94 Colum. L. Rev. 2430 1994

1994] MANIFESTO) 2431

ers and follow-on innovators were blocked from entering the market long
after the first firm had recouped its initial investment. We have not at-
tempted to fix a precise duration for this period or other implementation
details that need further discussion and debate. We aim to provide a
framework for determining what constitutes a clone and when cloning
would be likely to have market-destructive effects. We also propose fur-
ther study to develop a registration system by which innovative compo-
nents of programs might become eligible, before expiration of the auto-
matic anti-cloning period, for an additional period of compensation for
use of their innovations on standard terms and conditions of the sort that
copyright collectives today employ for subject matters they license.

HeinOnline -- 94 Colum. L. Rev. 2431 1994

