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This article introduces a model-based approach to distributed computing for multinomial logis-
tic regression. We treat counts for each response category as independent Poisson regressions
via plug-in estimates for fixed effects shared across categories. The work is driven by the high-
dimensional-response multinomial models that arise in analysis of a large number of random
counts. Our archetypal applications are in text analysis, where documents are tokenized and the
token counts are modeled as arising from a multinomial dependent upon document attributes.
We estimate such models for a publicly available dataset of reviews from Yelp, with text re-
gressed onto a large set of explanatory variables (user, business, and rating information). The
fitted models serve as a basis for exploring the connection between words and variables of inter-
est (e.g., star rating), for reducing dimension into supervised factor scores, and for prediction.
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1 Introduction

This article is motivated by datasets that include counts in a massive number of categories,

such as text corpora (counts for words), browser logs (counts on websites), and website track-

ing (counts of clicks). The unit upon which counts are observed – e.g., a ‘document’ for text or

a ‘user’ in web analysis – is annotated with attributes, additional information about each docu-

ment (author, date, etc) or user (age, purchases, etc). Much of contemporary Big data analysis

involves some exploration, inference, and prediction of, or controlling for, the relationship be-

tween these attributes and the associated very-high-dimensional counts.

Say ci is a vector of counts in d categories, summing to mi =
∑

j cij , accompanied by a

p-dimensional attribute vector vi on observation unit i of n total. For example, in the archetypal

text mining application, ci are counts for words in document i annotated with metadata vi. We

connect attributes and counts through a big multinomial logistic regression model,

p(ci|vi,mi) = MN (ci; λi/Λi, mi) , where λij = exp[αj + v′iϕj] and Λi =
d∑
j=1

λij. (1)

The multinomial denoted MN here has, for unit i, category j probability λij/Λi and size mi.

This model can be computationally expensive to estimate for a large number of response cate-

gories (i.e., big ci dimension d). Even a single likelihood evaluation is costly, due to the sum

required for each normalizing intensity Λi. The methodological innovation of the current arti-

cle is to replace Λi with initial estimates, then condition upon these plug-ins when estimating

(1) through d individual Poisson regressions for counts in each category j. This model-based

factorization allows one to partition computation across many independent machines, so with

enough processors the system of (1) is fit in the time required for a single Poisson regression.

We refer to this framework as distributed multinomial regression, or DMR. Our work here

extends ideas from Taddy (2013c), which introduced the strategy of multinomial inverse re-

gression (MNIR). That article argues for estimation of models like (1) as the first step in an

inverse regression routine for predicting elements of new vi. However, Taddy (2013c) relies

upon a fitting algorithm that collapses response counts across equal vi, and hence scales only

for a small number of attributes (i.e., when p is just one or two). That article is also focused
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exclusively on applications in attribute prediction. The purpose of the current article is thus

two-fold: to supply techniques for estimation when both c and v are high dimensional, and to

illustrate how these models can be useful in many aspects of analysis and inference.

Much of the paper is devoted to an example analysis of reviews on Yelp – an Internet

platform for feedback on various establishments, including restaurants, barbers, schools and

much else. This dataset has a rich feature set associated with a wide variety of reviews. The

data are also publicly available, after (free) registration on the data mining contest website

kaggle.com. Moreover, our technology is provided in the distrom package for R and

Yelp analysis code is cataloged at github.com/mataddy/yelp. Public access is essential

here: our goal is to provide a complete template for analysis of high-dimensional count data.

The estimation strategy is detailed in Section 2, including model factorization, plug-ins for

Λi, and regularization path estimation within each parallel regression. Methods are illustrated

in the short classification example of Section 3, which shows utility for DMR not only in big d

but also as a speedup for small d multinomial regressions. Finally, Section 4 runs through our

full Yelp example, detailing model estimation and a variety of analysis applications.

• Exploration: what words are associated with funny or useful content?

• Dimension reduction: which reviews have the most funny or useful content?

• Prediction: what will be the usefulness or hilarity of a new review?

• Inference: does user experience lead to higher star ratings?

All of this is built upon partial effects: connections between text and attributes that arise after

controlling for collinearity between attributes. Section 5 closes with a short discussion.

2 Methods: Estimation in Distribution

For convenience, we’ll adopt terminology from text analysis for the remainder and refer to each

unit i as a ‘document’ and each category j as a ‘word’.1 Suppose that every document-word

count cij has been drawn independently Po (λij) – Poisson with intensity (i.e., mean) λij . The

joint document likelihood, for ci, then factorizes as the product of a multinomial distribution

1Even in text mining this is a simplification; each j could be a combination of words or any other language token.
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for individual counts conditional on total count mi and a Poisson distribution mi. That is, the

multinomial is ‘embedded’ in the Poisson as

p(ci) =
∏
j

Po (cij; λij) = MN (ci; λi/Λi, mi) Po (mi; Λi) . (2)

This well known result has long been used by statisticians to justify ignoring whether

sampling was conditional on margin totals in analysis of contingency tables. Birch (1963)

showed that the maximum likelihood estimate (MLE) of λi is unchanged under a variety of

sampling models for 3-way tables under the constraint that Λi = mi. This is satisfied at the

MLE for a saturated model. Palmgren (1981) extends the theory to log-linear regression with

λij = exp[αj + µi + ϕ′jvi], showing that the Fisher information on regression coefficients is

the same regardless of whether or not you’ve conditioned on mi so long as µi in the Poisson

model is estimated at its conditional MLE,

µ?i = log

(
mi∑

j e
αj+v′

iϕj

)
. (3)

Most commonly, (2) is invoked when applying multinomial logistic regression: totals mi

are then ancillary and the µi drop out of the likelihood. Our DMR framework takes the opposite

view: if we are willing to fix estimates µ̂i potentially not at their MLE (we will argue for µ̂i =

logmi), then the factorized Poisson likelihood can be analyzed independently across response

categories.2 As highlighted in the introduction, this yields distributed computing algorithms for

estimation on previously impossible scales. Indeed, we have observed in text and web analysis

a recent migration from multinomial models – say, for latent factorization – to Poisson model

schemes; see Gopalan et al. (2013) as an example. From the perspective of this article, such

strategies are Big data approximations to their multinomial precursors.

2In an older version of this idea, Hodges and Le Cam (1960) introduce a Poisson approximation to the binomial
distribution, for which McDonald (1980) provides error bounds and extension to multinomials.

4



2.1 Estimating baseline intensity

Parametrize the multinomial logistic regression model in (1) through natural parameters ηij =

αj + v′iϕj = log λij . Then the negative log likelihood is proportional to

n∑
i=1

[
mi log

(
d∑
j=1

eηij

)
− c′iηi

]
. (4)

It is easy to verify that adding observation fixed effects µi to each ηij in (4) leaves the likelihood

unchanged. In contrast, the corresponding Poisson model, unconditional on mi, has negative

log likelihood proportional to

d∑
j=1

n∑
i=1

[
eµi+ηij − cij(µi + ηij)

]
(5)

with gradient on each µi of g(µi) = eµi
∑

j e
ηij −mi, and is clearly sensitive to these observa-

tion ‘baseline intensities’. As mentioned above, solution for the parameters of ηij is unchanged

between (4) and (5) if each µi is set to its conditional MLE in (3).

Unfortunately, if our goal is to separate inference for ϕj across different j, the MLE for-

mula of (3) will create a computational bottleneck: each category-j Poisson regression requires

updates to µ? = [µ?1 . . . µ
?
n]′ during estimation. Distributed computation precludes such com-

munication, and we instead use the simple plug-in estimator

µ̂i = logmi. (6)

We’ll justify this choice as optimal in a few simple models, and rely upon empirical evidence

to claim it performs well in more complex settings.3

The gradient of the Poisson likelihood in (5) on µi at our plug-in is g(µ̂i) = mi (
∑

i e
ηij − 1).

Define the plug-in MLEs η̂i = [η̂i1 . . . η̂id]
′ as those which minimize the Poisson objective in

(5) under µi = µ̂i. Then in the three simple settings below, g(µ̂i) = 0 for ηi = η̂i. This implies

that µ̂i is actually on the joint MLE, and thus that {η̂i, µ̂i} minimize the Poisson objective in

3Note that, when compared to (3), the plug-in replaces
∑
j e
αj+v′

iϕj = 1. Adding a constant to each αj leaves
probabilities unchanged, so this can be made to hold without affecting fit.
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(5) while {η̂i} minimizes the logistic multinomial objective in (4).

• In a saturated model, with each ηij free, η̂ij = log(cij)− µ̂i = log(cij/mi) and g(µ̂i) = 0.

• With intercept-only ηij = αj , the Poisson MLE is α̂j = log
∑

i cij − log
∑

i e
µ̂i =

log (
∑

i cij/M) where M =
∑

imi, and g(µ̂i) = mi(
∑

j

∑
i cij/M − 1) = 0.

• Consider a single vi ∈ {0, 1} such that ηij = αj + viϕj . Write Cvj =
∑

i:vi=v
cij

and Mv =
∑

i:vi=v
mi =

∑
j Cvj . Then the Poisson MLE are α̂j = log(C0j/M0) and

ϕ̂j = log(C1j/M1)− log(C0j/M0), so that g(µ̂i) = mi

(∑
j Cvij/Mvi − 1

)
= 0.

Of course, these examples do not form a general result: the situation is more complicated with

correlated covariates or under regularization. But they illustrate analytically why we might

expect the performance we’ve seen empirically: estimates based upon µ̂i = logmi do not suffer

in out-of-sample validation. The resulting benefit is huge, as using a plug-in allows estimation

of the Poisson regression equations to proceed in complete isolation from each other. See

Appendix A.1 for an example MapReduce implementation.

2.2 Parallel Poisson regressions

Given baseline intensities fixed as µ̂i = logmi, each of our d separate Poisson regressions has

negative log likelihood proportional to

l(αj,ϕj) =
n∑
i=1

[
mie

αj+v′
iϕj − cij(αj + v′iϕj)

]
. (7)

You are free to use your favorite estimation technique for each parallel regression. This section

outlines our specific approach: ‘gamma lasso’ L1 regularized deviance minimization.

In high-dimensional regression, it can be useful to regularize estimation through a penalty

on coefficient size. This helps to avoid over-fit and stabilize estimation. A very common form

of regularization imposesL1 coefficient costs (i.e., the lasso of Tibshirani, 1996) which, due to a

non-differentiable cost spike at the origin, yields variable selection: some coefficient estimates

will be set to exactly zero. Our results here use weighted L1 regularization

α̂j, ϕ̂j = argmin
αj ,ϕj

{
l(αj,ϕj) + nλ

p∑
k=1

ωjk|ϕjk|

}
where λ, ωjk ≥ 0. (8)
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Penalty size λ acts as a squelch that determines what you measure as signal and what you

discard as noise. In practice, since optimal λ is unknown, one solves a regularization path of

candidate models minimizing (8) along the grid λ1 > λ2 . . . > λT . Inference is completed

through selection along this path, with optimal λt chosen to minimize cross validation (CV)

or information criteria (IC; e.g. Akaike’s AIC) estimated out-of-sample (OOS) deviance (i.e.,

to minimize the average error for a given training algorithm when used to predict new data).

Crucially, selection is applied independently for each category j regression, so that only a

single set of coefficients need be communicated back to a head node.

Analysis in this article applies the gamma lasso algorithm of Taddy (2013a), wherein

weights ωj diminish as a function of |ϕ̂j|.4 In particular, along the grid of λt squelch values,

ωtjk =
(
1 + γ|ϕ̂t−1jk |

)−1 for γ ≥ 0. (9)

This includes the standard lasso at γ = 0. For γ > 0 it provides diminishing bias regularization,

such that strong signals are less shrunk towards zero than weak signals. This yields sparser ϕ̂,

which reduces storage and communication needs, and can lead to lower false discovery rates.

For selection along the path, we minimize a corrected AIC (Hurvich and Tsai, 1989)

AICc: − 2l(α̂j, ϕ̂j) + 2dfj
n

n− dfj − 1
, (10)

where dfj is the estimated degrees of freedom used to fit {α̂j, ϕ̂j}. This corrects the AIC’s

tendency to over-fit, and Taddy (2013a) finds that AICc performs well in a variety of settings.

In Section 3, where computation costs are very low, we also consider CV selection rules: both

CV1se, which chooses the largest λt with mean OOS deviance no more than one standard error

away from minimum, and CVmin, which chooses λt at lowest mean OOS deviance.

See Taddy (2013a) for details.5 That article reviews diminishing bias penalty regularization,

emphasizing connections to weighted L1 penalties, the role of regularization paths and model

selection, and the distance from a weighted L1 solution to an L0 penalized oracle.

4The iteratively reweighted least squares algorithm in Section 6 of Taddy (2013a) applies directly to Poisson family
regressions by setting each iteration’s ‘observation weights’ λij and ‘weighted response’ log λij + cij/λij − 1.

5All of our results use the gamlr implementation in R. The glass-shard example of Section 3 sets γ = 0 for direct
comparison to a lasso penalized alternative, while the Yelp fits of Section 4 all use γ = 1 for more sparsity.

7



3 Example: glass shards

Our motivating big-d applications have the characteristic that mi is random, and usually pretty

big. For example, text mining mi is the total word count in document i, and web analysis

mi would be the total count of sites visited by a browser. A Poisson model for mi is not far

fetched. However, we also find that DMR also does well in the more common polychotomous

regression setting, where mi = 1 always. It thus provides an every-day speedup in multinomial

regression: even with small-d response categories, you’ll be able to fit the model almost d times

faster in distribution.6 Thus before moving to our Yelp case study, we look at the surprisingly

strong performance of DMR in a simple classification problem.

This example considers the small forensic glass dataset from Venables and Ripley (2002),

available in the MASS library for R under the name fgl.7 The data are 214 observations on

shards of glass. The response of interest is of 6 glass types: window float glass (WinF), window

non-float glass (WinNF), vehicle window glass (Veh), containers (Con), tableware (Tabl)

and vehicle headlamps (Head). Covariates for each shard are their refractive index and %-by-

weight composition amongst 8 oxides. Figure 1 shows Poisson regression regularization paths

for each glass type, with AICc selection marked by a vertical dashed line.
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Figure 1: Forensic Glass. Regularization paths for each glass-type, with AICc selections marked.

6In shared-memory parallelization we observe speedups close to linear in d, depending upon machine architecture.
7For the code used in this example, type help(dmr) in R after loading the distrom library.
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Figure 2: Forensic Glass. OOS deviance samples for dmr and glment in a 20-fold OOS experiment.

The response here is a single category, such that mi = 1 and µ̂i = 0 for all i. This clearly

violates the assumption of Poisson generation: mi = 1 is not random. For example, Figure 3

shows the conditional MLE µ?i = log
(
mi/

∑
j e

α̂j+v′
iϕ̂j

)
at AICc selected coefficients. The re-

sult is distributed around, but not equal to, the assumed plug-in of µ̂i = 0 for all i. However dmr

still works: Figure 2 shows the distribution for OOS error in a 20-fold OOS experiment, either

using AICc or CV selection on each individual Poisson regression, against CV selected mod-

els from a lasso path for full multinomial logistic regression as implemented in the glmnet

package for R (Friedman et al., 2010). There are subtle differences (e.g., AICc DMR selection

has lower mean deviance with higher variance), but the full multinomial fits (glmnet) do not

have any clear advantage over the nearly d-times faster approximation (distrom).
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Figure 3: Forensic Glass. The conditional MLEs µ?i implied at our DMR coefficient estimates.
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4 Yelp case study

These data were supplied by the review site Yelp for a data mining contest on kaggle.com.

The data are available at www.kaggle.com/c/yelp-recruiting/data, and code for

processing and estimation is at github.com/TaddyLab/yelp. We consider business,

user, and review datasets in the yelp training data collection. The reviews, for all sorts

of businesses, were recorded on January 19, 2013 for a sample of locations near to Phoenix

AZ. The goal of the competition was to predict the combined number of ‘funny’, ‘useful’, or

‘cool’ (f/u/c) votes that a given review receives from other users. Such information can be used

by yelp to promote f/u/c reviews before waiting for the users to grade them as such.

After detailing the data and model in Section 4.1, we describe a series of statistical analyses.

4.2 Investigate model fit under a range of regularization schemes, looking at how word load-
ings change with the relative weight of penalty on variables of interest vs controls.

4.3 Use the ideas of ‘sufficient reduction’ to project text through the model onto topics rele-
vant to f/u/c votes or star ratings, and interpret the resulting factor spaces.

4.4 Apply these factor projections in prediction for the number of f/u/c votes (i.e., the original
kaggle task), and compare results against a standard lasso in OOS experimentation.

4.5 Use the factor projections in treatment effect estimation – for the effect of user experience
on rating – where they serve to control for heterogenaity in review content.

By viewing text data as a big multinomial regression, we are able to address all of the above

(and resolve the effects of many collinear attributes on review text) through a single model fit.

4.1 Data and model specification

The data are n = 215,879 reviews on 11,535 businesses by 43,873 users.8 Review text is split

on whitespace and tokenized into words (including combinations of punctuation: potential

emoticons). After stripping some common suffixes (e.g., ‘s’, ‘ing’, ‘ly’) and removing a very

small set of stopwords (e.g., ‘the’, ‘and’, ‘or’), we count frequencies for d = 13,938 words

occurring in more than 20 (< 0.01%) of the reviews (total word count is M = 17,581,214).

8We’ve removed reviews with unknown user
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Metadata includes review, business, and user attributes.

• stars: review star rating (out of 5), from which we subtract the business average rating.

• Review counts for funny, useful, or cool votes. We divide these by the square root
of review age, which yields metrics roughly uncorrelated with the posting date.

• usr.count: a user’s total number of reviews at time of posting the given review

• usr.stars: a user’s average star rating across all of their reviews.

• A user’s average usr.funny, usr.useful, or usr.cool votes per review.

• Business average star rating biz.stars and review count biz.count.

• Business location amongst 61 possible cities surrounding (and including) Phoenix.

• Business classification according to Yelp’s non-exclusive (and partially user generated)
taxonomy. We track membership for 333 categories containing more than 5 businesses.

This yields 405 variables for each review. We also specify random effects for each of the 11,535

businesses, leading to total attribute dimension p = 11,940. Data components are the n × d

document-term matrix C, the n-vector of its row-totals m, and the n× p attribute matrix V.

We split each row of the attribute matrix into two elements: ai, the 11 numeric review

attributes from stars through biz.count, and bi, a length-11,929 vector of dummy in-

dicators for business identity, location, and yelp classification. This is done to differentiate

the variables we deem of primary interest (ai) from those which we include as controls (bi);

write V = [ A B ] as the resulting partition. Columns of A are normalized to have mean

zero and variance one. The multinomial regression of (1) is adapted by similarly splitting each

ϕj = [ϕaj ,ϕ
b
j] and rewriting category intensities log λij = αj + a′iϕ

a
j + b′iϕ

b
j.

4.2 Multinomial model fit and interpretation

Following the recipe of Section 2.2, each word’s Poisson regression is estimated

α̂j, ϕ̂j = argmin
αj ,ϕj

{
l(αj,ϕj) + nλ

[∑
k

ωajk|ϕajk|+
1

τ

∑
k

ωbjk|ϕbjk|

]}
, (11)

where l(αj,ϕj) =
∑n

i=1

[
mie

αj+a′
iϕ

a
j+b′

iϕ
b
j − cij(αj + a′iϕ

a
j + b′iϕ

b
j)
]
. The relative penalty

weight τ > 0 controls differential regularization between the target variables and the controls.
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At larger τ values, there is less penalty on ϕbj and the effect of bi on cij has less opportunity to

pollute our estimate for ϕaj . That is, ϕ̂aj becomes more purely a partial effect. At the extreme

of τ =∞, any collinearity with bi is be completely removed from the estimated ϕ̂aj .

As outlined in Appendix A.1, counts for the 14k words are partitioned into 256 files. Each

file is then read by one of 64 workstations, which itself uses 16 cores in parallel to run through

the Poisson regressions. Each individual regression is a full gamma lasso path solution over

grids of 100 λt squelch values, with weights ωatjk, ω
bt
jk updated as in (9) under γ = 1, and

AICc selected coefficients are then written to file. The entire problem (including the sufficient

reduction projection of our next section) takes around 1/2 hour.

Regularization paths for a few of the Poisson regressions, estimated under τ = 2 relative

penalty weight, are shown in Figure 4. Coefficient values are scaled to the effect of 1sd change

in the corresponding attribute. We see, for example, that at our AICc selection the effect of a

1sd increase in review stars multiplies the expected count (or odds, in the multinomial model)

for the happy face :-) by around exp 0.38 ≈ 1.46, the ‘hmmm’ face :-/ by exp−0.15 ≈ 0.86,
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Figure 4: Yelp. Poisson regression regularization paths for counts of the tokens :-), :-/, and :-(
under relative penalty weight τ = 2. Coefficient values have been multiplied by the corresponding
covariate standard deviation. The legend highlights select covariates, regression degrees of freedom are
on the top axis, and our AICc selected estimates are marked with vertical dashed lines.
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and the sad face :-( by exp−0.35 ≈ 0.7. Notice that :-/ and :-( both occur more often in

low star (negative) reviews, but that :-/ is associated with useful content while :-( is uncool.

Table 1 investigates fit under increasing τ , which allocates more count variation to the

controls in B. The numbers of nonzero ϕ̂ajk (i.e., deemed useful for OOS prediction by AICc)

are decreasing with τ for all attributes. This is because B accounts for more variation in C at

higher τ , and there is little residual variation left for A. At τ = 200, for example, there are only

7 words positively associated with a cool vote. Such differential penalization is a powerful

tool in Big data analysis, as it allows one to isolate partial effects in messy overdetermined

systems. Here, τ = 2 yields top words only indirectly associated with our attributes (e.g., prik

is positive because Thai food is tasty), while full τ = ∞ control leads to near perfect fit and

infinite likelihoods conditional on B alone. To our eye, τ = 20 manages a good balance: there

remain many significant ϕ̂ajk 6= 0, but the model has avoided loading words that are not directly

associated with the given attributes. This fit is used in the remainder of our study.

τ ϕ̂ 6= 0 top ten words by loading

marginal great love amaz favorite deliciou best awesome alway perfect excellent

+stars 2 8440 unmatch salute :-)) prik laurie pheonix trove banoffee exquisite sublime

20 3077 heaven perfection gem divine amaz die superb phenomenal fantastic deliciousnes

200 508 gem heaven awesome wonderful amaz fantastic favorite love notch fabulou

marginal not worst ask horrib minut rude said told would didn

-stars 2 8440 rude livid disrespect disgrace inexcusab grossest incompet audacity unmelt acknowledge

20 3077 rude incompet unaccept unprofession inedib worst apolog disrespect insult acknowledge

200 508 worst horrib awful rude inedib terrib worse tasteles disgust waste

marginal you that know like your yelp ... what don who

funny 2 6508 dimsum rue reggae acne meathead roid bong crotch peni fart

20 1785 bitch shit god dude boob idiot fuck hell drunk laugh

200 120 bitch dear god hell face shit hipst dude man kidd

marginal that yelp you thi know biz-photo like all http ://

useful 2 5230 fiancee rife dimsum maitre jpg poultry harissa bureau redirect breakdown

20 884 biz-photo meow harissa www bookmark :-/ http :// (?), tip

200 33 www http :// com factor already final immediate ask hope

marginal yelp you that biz-photo http :// www know like your

cool 2 4031 boulder lewi rogue lagunita wanton celebratory hanker politic mozzerella onsite

20 577 userid htm cen rand poem sultry arlin brimm cubic inspiration

200 11 biz-photo select yelp along certain fil chose house

Table 1: Top 10 words by loading on review characteristics, as a function of relative penalty weight τ .
The top row for each attribute corresponds to terms ordered by marginal correlations.
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4.3 Sufficient reduction

The previous section’s coefficient estimates, resolving a complex system of relationships be-

tween words and attributes, provide a rich basis for story telling and exploratory analysis. For

many, this is either the end-goal or a jumping-off point (e.g., to experiments testing hypothe-

ses generated in exploration). But in our practice, a primary reason for fitting big multinomial

models is as a tool for dimension reduction, mapping from the original d-dimensional text down

to univariate indices that contain all information relevant to a given attribute.

Cook (2007) outlines use of regression models with high-dimensional response as a map to

project from that response onto interesting covariates. Taddy (2013c) extends the idea in our

context of big multinomials, motivated by applications in text analysis. Both of these articles

are focused on inverse regression (IR), a technique wherein the fitted model map is applied

for prediction of unobserved covariates (e.g., the votes associated with new review text, as in

Section 4.4). However, the IR algorithms are prefaced on a more basic concept of sufficient

reduction (SR), which is useful beyond its application in IR prediction.

Consider observation ci from a d dimensional exponential family linear model, with natural

parameter ηi = [ηi1 . . . ηd]
′, ηij = αj + viϕj , such that

p(ci) = h(ci) exp [c′iηi + A(ηi)] (12)

where h is a function of only data (not ηi) while A is a function of only parameters (not ci).

Both the full multinomial logistic regression model (conditional upon mi) or our independent

Poissons model (conditional upon µ̂i) can be written as in (12). Then with Φ = [ϕ1 · · ·ϕd] the

p× d matrix of regression coefficients, we get

p(ci) = h(ci)e
c′iα exp [c′iΦ

′vi + A(Φ′vi)] = h̃(ci)g(Φci,vi), (13)

so that the likelihood factorizes into a function of ci only and another function of vi that de-

pends upon ci only through the projection Φci. This implies that, conditional upon the regres-

sion parameters, Φci is a sufficient statistic for vi. That is, vi ⊥⊥ ci | Φci.

We call zi = Φci an SR projection. In practice, we work with estimated SR projections zi =
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Φ̂ci and hope that Φ̂ has been estimated well enough for zi to be a useful summary (see Taddy,

2013d, for discussion). In that case, Φ̂ provides a linear map from text into the p-dimensional

attribute space. This works just like the rotation matrix from common principal components

analysis except that, instead of mapping into latent factors, Φ projects into observed attributes.

The resulting zi are model-based sufficient statistics, useful in the same roles as a traditional

sufficient statistic (like x̄). For example, to predict vik from ci we can work with univariate

zik instead of the d-dimensional original text. In general, SR projections are a simple way

to organize information in Big data systems. When new text ci arrives, one need just feed it

through Φ to obtain zi indices which can be summarized, plotted, and analyzed as desired.

It is important to emphasize that, since estimated loadings ϕ̂ik are partial effects (influ-

ence of other attributes has been controlled for), zik will also correspond to partial rather than

marginal association. As another way to see this, note that the factorization in (13) is eas-

ily manipulated to show sufficiency for each individual zik conditional on vi,−k, our vector

of attributes ommiting the kth. Thus SR reduces dimension into a space of information di-

rectly relevant to an attribute of interest, where influence of text variation due to other attributes

has been removed or minimized. Consider the correlation matrices in Figure 5. The origi-

nal vote attributes are highly positively correlated, while the text projections are either nearly

independent (e.g., useful against either funny or cool) or strongly negatively correlated

(funny and cool). This suggests that there are underlying factors that encourage votes in any

category; only after controlling for these confounding factors do we see the true association

between f/u/c content. Similarly, all vote attributes are uncorrelated with star rating, but for the

text projections we see both negative (funny,useful) and positive (cool) association.

Correlation matrices

attributes (v) text projections (z)
f u c ? f u c ?

funny 1 0.7 0.8 0 funny 1 -0.1 -0.7 -0.4
useful 0.7 1 0.9 0 useful -0.1 1 0.1 -0.2

cool 0.8 0.9 1 0 cool -0.7 0.1 1 0.5
stars 0 0 0 1 stars -0.4 -0.2 0.5 1

Figure 5: Correlation for the original review attributes in v (left) and for z (right) SR text projection.
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The three 50-100 word reviews in Figure 6 provide further illustration. A single review

(bottom) of a historical site scores highest in funny and useful attributes (and also in cool).

The review is neither dry nor useless, but we imagine its high vote count has been influenced by

other factors; e.g., the page is heavily viewed, or people who read reviews of national parks are

more likely to vote. In contrast, read the two reviews identified through our machine-learned

SR projections as having the most funny or useful text content. The funny review, for a pizza

restaurant, is a fictional comedic story. The useful review contains a high proportion of business

photos (biz-photo), which the multinomial model has identified as directly useful.

4.4 Inverse regression for prediction

Multinomial-based SR projections were originally motivated by Taddy (2013c) for their use

in multinomial inverse regression (MNIR; see also Taddy, 2013b). Say viy, some element

of the attribute vector vi, is viewed as a ‘response’ to be predicted for future realizations. For

example, in the original kaggleYelp contest the goal was to predict vi,funny, vi,useful, or vi,cool

– the vote attributes. In such applications, an MNIR routine would use the SR projection into

viy, ziy =
∑

j ϕ̂jycij , to build a forward regression that predicts viy from ziy, vi,−y (attributes

ommiting y), and mi.9 This p + 1 dimensional regression replaces the d + p − 1 dimensional

one that would have been necessary to predict viy from vi,−y and ci, the original text counts.

Estimating an inverse regression in order to get at another forward regression may seem a

strange use of resources. But there are a variety of reasons to consider MNIR. Computationally,

through either the techniques of this article or the collapsing of Taddy (2013c), the multinomial

regression estimation can occur in distribution on many independent machines. This is useful

when the full count matrix C is too big to fit in memory. Another reason to use MNIR is

for statistical efficiency when d is big relative to n. Assuming a multinomial distribution for

ci | vi introduces information into the estimation problem (a less generous term is ‘bias’). In

particular, it implies that each of the M =
∑

imi counts are independent observations, such

that the sample size for learning Φ becomes M rather than n. That is, estimation variance

decreases with the number of words rather than the number of documents (see Taddy, 2013d).

9The SR result that applies here is viy ⊥⊥ ci | ziy,vi,−y,mi. Since sufficiency for ziy from the multinomial
factorization is conditional upon mi, these document totals need to be conditioned upon in forward regression.
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Funniest 50-100 word review, by SR projection zfunny.

Dear La Piazza al Forno: We need to talk. I don’t quite know how to say this so I’m just going
to come out with it. I’ve been seeing someone else. How long? About a year now. Am I in
love? Yes. Was it you? It was. The day you decided to remove hoagies from your lunch menu,
about a year ago, I’m sorry, but it really was you...and not me. Hey... wait... put down that
pizza peel... try to stay calm... please? [Olive oil container whizzing past head] Please! Stop
throwing shit at me... everyone breaks up on social media these days... or haven’t you heard?
Wow, what a Bitch!

Most useful 50-100 word review, by SR projection zuseful.

We found Sprouts shortly after moving to town. There’s a nice selection of Groceries & Vi-
tamins. It’s like a cheaper, smaller version of Whole Foods. [biz-photo] [biz-photo] We shop
here at least once a week. I like their selection of Peppers....I like my spicy food! [biz-
photo][biz-photo][biz-photo] Their freshly made Pizza isn’t too bad either. [biz-photo] Over-
all, it’s a nice shopping experience for all of us. Return Factor - 100%

Funniest and most useful 50-100 word review, as voted by Yelp users
(votes normalized by square root of review age).

I use to come down to Coolidge quite a bit and one of the cool things I use to do was come
over here and visit the ruins. A great piece of Arizona history! Do you remember the Five C’s?
Well, this is cotton country. The Park Rangers will tell you they don’t really know how old
the ruins are, but most guess at around 600 years plus. But thanks to a forward thinking US
Government, the ruins are now protected by a 70 foot high shelter. Trust me, it comes in handy
in July and August, the two months I seem to visit here most. LOL. I would also recommend
a visit to the bookstore. It stocks a variety of First Nation history, as well as info on the
area. http://www.nps.gov/cagr/index.htm. While you are in Coolidge, I would recommend the
Gallopin’ Goose for drinks or bar food, and Tag’s for dinner. Both are great!

Figure 6: Illustration of the information contained in sufficient projections z. The top two reviews
are those, amongst all where m ∈ (50, 100), with highest SR projection scores into the funny and
useful attribute spaces. For comparison, we also show the single 50-100 word review with highest
values for both vfunny and vuseful (recall that these are vote totals per square root review age). Note that,
since variance of z increases with m, high scoring reviews tend to be longer. One can also, as in Taddy
(2013c), divide the SR projections by document length and work with normalized z/m. On this scale,
the funniest review is ‘Holy Mother of God’ and the most useful review is ‘Ask for Nick!’.
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forward regression average out-of-sample R2

input variables dimension funny useful cool

standard lasso non-vote attributes, C 25,876 0.308 0.291 0.339
MNIR + lasso non-vote attributes, z, m 11,940 0.316 0.296 0.341

Table 2: Yelp. Out-of-sample R2 in prediction for vote attributes (normalized by root review age) in
5-fold CV. The top row shows a standard lasso regression from the vote attribute onto text and all non-
vote attributes, while the bottom row holds results for MNIR followed by lasso regression from the vote
attribute onto review length (mi), non-vote attributes, and the corresponding univariate SR projection.

As an illustration, Table 2 shows results for prediction of individual f/u/c vote attributes,

both through MNIR with lasso forward regression and for a standard lasso onto the full text

counts. That is, MNIR fits E[viy] = β0 + [vi,−f/u/c,mi, ziy]
′β while the comparator fits E[viy] =

β0 + [vi,−f/u/c, ci]
′β, where vi,−f/u/c denotes all non-vote attributes. For MNIR each Φ̂ (hence,

ziy) is also estimated using only the training sample, and in both cases prediction rules were

selected via AICc minimization along the L1 regularization path. We see that MNIR forward

regression, replacing 13,938 covariates from ci with just the two numbers zyi and mi, does

not suffer against the full lasso comparator (indeed, it is very slightly better in each case).

Such performance is typical of what we’ve observed in application.10 This is not evidence that

the text counts do not matter: each full lasso estimates at least 4,000 terms having non-zero

coefficients. Rather, the multinomial model is a good enough fit that the factorization results of

(13) apply and all relevant information is contained in the SR projection.11

Note that the MNIR forward regression ignores projection from text onto any other non-

vote attributes. This is because those attributes are conditioned upon in forward regression.

Indeed, Taddy (2013c,d) argue that, in prediction for a single variable, you only need fit the

multinomial dependence between counts and that single variable. This yields SR projection

based on marginal association, which can work as well as that based on partial association for

simple predictions. The benefit of fitting models for high-dimensional vi is that we are then

able to interpret the resulting partial effects and SR projections, as in Sections 4.2-4.3. It is also

useful in more structured prediction settings, as in the next section.

10In Taddy (2013c), the MNIR routines more significantly outperform lasso comparators in OOS prediction. How-
ever, the datasets used in that paper are both very small, with M � n. Thus our statistical efficiency argument –
that for MNIR estimation variance decreases with M instead of n – is working heavily in favor of MNIR. Here,
even though M > n, vocabulary size d is smaller than n and linear regression is already plenty efficient.

11We have also found success applying nonlinear learning (e.g., trees) in forward regression after SR projection.
Methods that are too expensive or unstable on the full text work nicely on the reduced dimension subspace.
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4.5 Confounder adjustment in treatment effect estimation

In our final example, we illustrate use of SR projections as convenient low dimensional controls

in treatment effect estimation. The task here has a particular attribute, say d, whose effect on

another, say y, you want to estimate. You want to know what will happen to y if d changes inde-

pendently from the other attributes. Unfortunately, everything is collinear in the data and both

y and d could be correlated to other unobserved confounders. Your best option is to estimate

the treatment effect – that of d on y – while controlling for observable potential confounders.

In text analysis, this includes controlling for the text content itself.

Consider estimating the effect of a user’s experience – the number of reviews that they have

written – on their expected rating. That is, are experienced users more critical, perhaps because

they’ve become more discerning? Or do they tend to give more positive reviews, perhaps

because community norms encourage a high average rating? It is hard to imagine getting firm

evidence in either direction without running a randomized trial – we will always be worried

about the effect of an omitted confounder. However, we can try our best and condition on

available information. In particular, we can condition on content to ask the question: even given

the same review message, would an experienced user give more or less stars than a newbie?

The response attribute, viy, is star rating. The treatment, vid, is the log number of reviews

by the author (including the current review, so never less than one). Results for estimation of

the effect of vid on viy, conditioning on different control variables, are detailed in Table 3. A

naı̈ve estimate for the effect of experience on rating, estimated through the marginal regression

E[viy] = β0 + vidγ, is a γ̂ = 0.003 increase in number of stars per extra unit log review count.

Use vi,−yd to denote all other attributes. Then an improved estimate of the treatment effect is

obtained by fitting E[viy] = β0 + vidγ + v′i,−ydβ, which yields the much larger γ̂ = 0.015.

Finally, we’d like to control for ci, the review content summarized as word counts. It would

also be nice to control for content interacting with attributes since, e.g., positive content for

a restaurant might imply a different star rating boost than it does for a bowling alley. Unfor-

tunately, interacting 13,938 dimensional ci with the 333 business categories yields almost 4.7

million regression coefficients. This is more controls than we have observations. However, the

SR projections offer a low-dimensional alternative. Write ziy and zid for the SR projections
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onto response and treatment, respectively. Then sufficiency factorization implies

viy, vid ⊥⊥ ci | ziy, zid,mi,vi,−yd. (14)

That is, the joint distribution of treatment and control is independent of the text given SR

projection into each. This suggests we can control for review content, and its interaction with

business classification, simply by adding to our conditioning set [ziy, zid,mi] and its interaction

with business classification. The resulting regression, with around 13k control coefficients

instead of 4.7 million, yields the still larger treatment effect estimate γ̂ = 0.02.

Marginal Conditional on attributes only Adding and interacting text SR
Effect estimate 0.003 0.015 0.020

Table 3: Estimated effect ‘γ’ of user experience (log number of reviews) on number of stars rated. Each
corresponds to different levels of confounder adjustment. The effects are all AICc selected estimates
along a γ = 10 (very near to L0) gamma lasso regularization path, where all of the other regression
coefficients were unpenalized. Thus they are significant, in the sense that the AICc deems vid useful for
predicting viy even after all variation explained by confounders has been removed.

5 Discussion

Distributed estimation for multinomial regression allows such models to be applied on a new

scale, one that is limited only by the number of machines you are able to procure. This advance

is important for applied work. The collapsing of Taddy (2013c) is useful in prediction prob-

lems, but today we more often find ourselves addressing inference and interpretation. High

dimensional attribute sets are essential for such problems because multinomial model needs to

believable. This is in contrast to pure prediction problems where, as outlined in Taddy (2013d),

one can model inverse regression misspecification during forward regression.

One message of this paper has been that Poisson factorization enables fast estimation of

multinomial distributions. It has been pointed out to us that, in unstructured data analysis, a

Poisson seems little more arbitrary than a multinomial model. Equation (2) clarifies this issue:

the only additional assumption one makes by working with independent Poissons is that the

aggregate total, mi, is Poisson. We’ve attempted to mitigate the influence of this assumption,

but that is unnecessary if you consider the Poisson a fine model in and of itself.
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A Appendix

A.1 MapReduce

MapReduce (MR; Dean and Ghemawat, 2004) is a recipe for analysis of massive datasets,

designed to work when the data itself is distributed: stored in many files on a network of

distinct machines. The most common platform for MR is Hadoop paired with a distributed file-

system (DFS) optimized for such operations (e.g., Hadoop DFS or Amazon’s S3 storage).

A MapReduce routine has three main steps: map, partition, and reduce. The partition is

handled by Hadoop, such that we need worry only about map and reduce. The map operation

parses unstructured data into a special format. For us, in a text mining example, the mapper

program will take a document as input, parse the text into tokens (e.g. words), and output lines

of processed token counts: ‘token document|count’. The pre-tab item (our token) is

called a ‘key’. Hadoop’s sort facility uses these keys to send the output of your mappers to

machines for the next step, reducers, ensuring that all instances of the same key (e.g., the same

word) are grouped together at a single reducer. The reducer then executes some operation that

is independent-by-key, and the output is written to file (usually one file per reducer).

DMR fits nicely in the MR framework. Our map step tokenizes your unstructured data and

organizes the output by token keys. Reduce then takes all observations on a single token and

runs a Poisson log regression, applying the gamma lasso with IC selection to obtain coefficient

estimates. These are used to build our SR scores, which can be employed in forward regression

after the MR routine is done. This recipe is detailed in Algorithm 1.

We’ve written this as a single MR algorithm, but other variations may work better for your

computing architecture. Our most common implementation uses streaming Hadoop on Ama-

zon Web Services (AWS) to execute the map on a large number of files in AWS S3 cloud

storage, but replaces the regression reduce step with a simple write, to solid state storage ‘mid-

way’ at the University of Chicago’s Research Computing Center, of token counts tabulated by

observation. For example, given 64 reducer machines on AWS the result is 64 text tables on

midway, with lines ‘word|doc|count’, each containing all nonzero counts for a subset of

the vocabulary of tokens. These files are small enough to fit in working memory12 and can be

12If not, use more reducers or split the files.
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Algorithm 1 MapReduce DMR

Map: For each document, tokenize and count sums for each token. Save the total counts mi

along with attribute information vi. Output token document|count.

Combine totals mi and attributes vi into a single table, say VM. This info can be generated
during map or extracted in earlier steps. Cache VM so it is available to your reducers.

Reduce: For each token key ‘j’, obtain a regularization path for Poisson regression of counts
cij on attributes vi with µ̂i = logmi. Apply AICc to select a segment of coefficients from this
path, say ϕ̂j , and output nonzero elements in sparse triplet format: word|attribute|phi.

Each reducer writes coefficients ϕ̂j of interest to file, and maintains a running total for SR
projection, zi+= c′iϕ̂j , output as say Z.r for the rth reducer. When all machines are done we
aggregate Z.r to get the complete projections.

analyzed on distinct compute nodes, each employing another layer of parallelization in looping

through Poisson regression for each token. This scheme is able to take advantage of Hadoop

for fast tokenization of distributed data, and of high performance computing architecture (much

faster than, say, a virtual AWS instance) for distributed regression analyses. This is a model

that should work well for the many statisticians who have access to computing grids that are

designed for high throughput tasks more traditionally associated with physics or chemistry.
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