
1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

Interfaces and Interoperability After

Google v. Oracle†*

Mark A. Lemley* & Pamela Samuelson**

Introduction

In its landmark decision, Google LLC v. Oracle America, Inc.,1 the U.S.

Supreme Court declined to address what had long been Google’s main

argument against Oracle’s decade-old lawsuit charging it with copyright

infringement for reusing parts of the Java Application Programming Interface

(API) in its Android smartphone software.2 The Court “assume[d], but purely

for argument’s sake, that the entire Sun Java API falls within the definition

of that which can be copyrighted.”3 It nonetheless found Google’s

reimplementation of those API elements legal under copyright’s fair use

doctrine because it enabled Java programmers to make use of their

investments in learning the Java API declarations at issue to develop new

application programs that could interoperate with the Android platform.4

† © 2021 Mark A. Lemley & Pamela Samuelson.

* William H. Neukom Professor, Stanford Law School; Partner, Durie Tangri LLP.

** Richard M. Sherman Distinguished Professor of Law, Berkeley Law School. Thanks to

Clark Asay, Jonathan Band, Jim Bessen, Joshua Bloch, Oren Bracha, Michael Carrier, Courtney

Cox, Jim Dabney, Eric Goldman, Paul Goldstein, James Grimmelmann, Rose Hagan, David Hayes,

Jonathan Masur, Sancho McCann, Peter Menell, Aaron Perzanowski, Jerry Reichman, Xiyin Tang,

and Rebecca Tushnet for comments on a prior draft.

1. 141 S. Ct. 1183 (2021).

2. Id. at 1197. Justice Breyer authored the Court’s opinion for himself and five other Justices.

Justices Thomas and Alito dissented. Id. at 1210. Early in the litigation, Google moved for summary

judgment on its defense that the interface elements at issue were uncopyrightable. The trial judge,

William Alsup, denied this motion. See Oracle Am., Inc. v. Google Inc. (Oracle I), 810 F. Supp. 2d

1002, 1005, 1013 (N.D. Cal. 2011) (denying Google’s summary judgment theories with one

exception for “the names of various items appearing in the disputed API package specifications”).

After a trial on the merits, Judge Alsup made findings of fact and rendered conclusions of law in

support of Google’s uncopyrightability defense. Oracle Am., Inc. v. Google Inc. (Oracle II), 872

F. Supp. 2d 974 (N.D. Cal. 2012). Oracle successfully appealed that decision. Oracle Am., Inc. v.

Google Inc. (Oracle III), 750 F.3d 1339 (Fed. Cir. 2014). The Supreme Court denied Google’s first

petition for certiorari on the copyrightability issue. Google Inc. v. Oracle Am., Inc., 576 U.S. 1071

(2015). Upon remand, a jury rendered a verdict in favor of Google’s fair use defense. Judge Alsup

denied Oracle’s Rule 50 motion for a judgment as a matter of law. Oracle Am., Inc. v. Google Inc.

(Oracle IV), No. C 10-03561 WHA, 2016 WL 5393938, at *1 (N.D. Cal. Sept. 27, 2016). Oracle

successfully appealed that decision and persuaded the Federal Circuit that no reasonable jury could

have found fair use. Oracle Am., Inc. v. Google LLC (Oracle V), 886 F.3d 1179 (Fed. Cir. 2018).

The Supreme Court’s reversal of Oracle V did not, however, vacate Oracle III.

3. Google, 141 S. Ct. at 1197. The Court’s explanation for ducking the copyrightability question

was that “[g]iven the rapidly changing technological, economic, and business-related

circumstances, we believe we should not answer more than is necessary to resolve the parties’

dispute.” Id.

4. Id. at 1208–09.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2 Texas Law Review [Vol. 100:1

The Court’s decision to sidestep the copyrightability issue is notable

because Google, and all but three of the twenty-seven amicus curiae briefs

filed in support of its appeal, urged the Court to hold that the Java API

declarations that Google reimplemented in Android were unprotectable by

copyright law under copyright law’s merger doctrine and/or the statutory

exclusion of systems and methods of operation from the scope of copyright

protection.5

The Court’s sweeping fair use ruling is an important victory for software

developers and for an open internet. But the decision not to address the larger

question—whether interfaces are copyright-protectable at all—will produce

uncertainty. Because the Court sidestepped the copyrightability issue in

Google, Federal Circuit judges may well decide (wrongly) that the Court

implicitly accepted its earlier holding that software interfaces are

copyrightable.6 And while, as we show, the regional circuits are virtually

unanimous in refusing to allow the copyrighting of interfaces, those who

want to claim copyrights in their interfaces can assure themselves that the

Federal Circuit will hear any appeal of copyrightability rulings by a simple

trick of forum shopping, namely, adding a patent claim to their complaints.

A case in point now pending before the Federal Circuit is SAS Institute, Inc.

v. World Programming Limited,7 in which a district court ruled that WPL’s

reimplementation of SAS interface elements did not infringe SAS’s

copyright because SAS did not prove that those elements were

copyrightable.8 SAS’s appeal relies heavily on the reasoning of the Federal

Circuit’s 2014 Oracle III9 decision.10

5. Brief for the Petitioner at 17–19, Google, 141 S. Ct. 1183 (No. 18-956). Only two of the

twenty-seven Google-side amicus briefs focused solely on the merits of Google’s fair use defense—

one by Microsoft and one by twenty-five copyright scholars. A third Google-side amicus brief

focused on whether fair use should be decided by judges or juries.

6. See Oracle V, 886 F.3d 1179 (Nos. 2017-1118, 2017-1202) (per curiam) (non-precedential

order), http://www.cafc.uscourts.gov/sites/default/files/opinions-orders/17-1118.ORDER.5-14-

2021_1777843.pdf [https://perma.cc/Y2JE-3RVY] (vacating the 2018 fair use ruling in light of

Google and remanding case to district court).

7. 496 F. Supp. 3d 1019 (E.D. Tex. 2020), appeal docketed, No. 2021-1542 (Fed. Cir. Jan. 13,

2021) (Westlaw).

8. Id. at 1021. In a nearly identical case between the same parties the Court of Justice of the

European Union held that the functional behavior of SAS’s program and the SAS Language were

not protectable by copyright law. Case C-406/10, SAS Inst. Inc. v. World Programming Ltd., ECLI:

EU:C:2012:259, ¶ 46 (May 2, 2012). A North Carolina district court also ruled against SAS’s

copyright claim against WPL for emulating the functionality of the SAS program, SAS Inst. Inc. v.

World Programming Ltd., 64 F. Supp. 3d 755, 783 (E.D.N.C. 2014), which the Fourth Circuit

decided was moot after it affirmed relief granted on a different claim, SAS Inst., Inc. v. World

Programming Ltd., 874 F.3d 370, 375 (4th Cir. 2017), cert. denied, 141 S. Ct. 1053 (2021).

9. 750 F.3d 1339 (Fed. Cir. 2014).

10. See Brief for Plaintiff-Appellant, SAS Inst. Inc. v. World Programming Ltd., No. 2021-1542

(Fed. Cir. May 14, 2021) (citing Oracle III repeatedly); see also id. at 35 n.2 (claiming that the

Supreme Court had not reversed the 2014 copyrightability ruling).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 3

In this article, we argue that defendants in future software copyright

cases should not shy away from challenging the copyrightability of program

interfaces.11 The Federal Circuit decision in Oracle III, which wrongly

extended copyright protection to APIs, is contrary to a consensus among

multiple appellate precedents concluding that copyright does not protect

elements of software programs, such as APIs, that enable interoperability.

Those cases remain good law, and the Federal Circuit is supposed to follow

them.

Refusing to protect APIs is also good policy. Indeed, we argue that

decisions not to give the developers of APIs copyright control over

reimplementation three decades ago was central to the development of the

interoperable ecosystem and the open internet we enjoy today. Ensuring

interoperability, in part by denying copyright protection to those who want

to close interfaces, may be the key to restoring an open internet that is today

threatened by dominant players with strong incentives to close their

networks.

In Part I, we discuss the consensus that emerged in the 1990s and early

2000s among the regional circuits that copyright protection does not extend

to interfaces that facilitate the development of interoperable computer

programs.12 Courts have invoked four principal copyright doctrines in

support of their holdings that the scope of copyright in computer programs

does not extend to such interfaces. One is the scenes a faire doctrine, which

excludes from copyright protection elements of copyrighted works that are

commonplace or constrained by external factors, such as the need to be

compatible with other software.13 A second is the merger doctrine, under

which original elements of protected works that can, as a practical matter, be

expressed in relatively few ways are said to be “merged” with the idea, fact,

or function, and are hence unprotectable by copyright law.14 A third focuses

on the statutory exclusion of procedures, processes, systems, and methods of

11. We do not consider a challenge to the copyrightability of specific elements of computer

programs, such as interfaces, to be a “defense” to a claim of infringement. Defendants may need to

challenge copyrightability and explain why they think the elements are not protectable by copyright

law. However, they do not bear the burden of persuasion on the issue because challenges to

copyrightability of specific elements goes to whether the plaintiff has made out a prima facie case

of infringement. The burden is always on plaintiffs to prove that what defendants appropriated from

their work is protectable expression. See, e.g., PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT

§ 16.3.2 (3d ed. Supp. 2021–2022) (explaining the burdens of proof for copyright infringement).

12. We use the terms compatibility and interoperability interchangeably in this Article.

13. See, e.g., Restatement of Copyright § 12(d) (Am. L. Inst., Tentative Draft No. 2, 2021)

(noting that copyright does not extend to elements of expression that constitute scenes a faire).

14. See, e.g., Pamela Samuelson, Reconceptualizing Copyright’s Merger Doctrine, 63 J.

COPYRIGHT SOC’Y USA 417 (2016) (discussing merger doctrine).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

4 Texas Law Review [Vol. 100:1

operation embodied in copyrighted works.15 A fourth is the fair use doctrine,

which considers the purpose of the challenged use, the nature of the

copyrighted work, the amount and substantiality of the taking, and the

consequential harms to markets for the protected works arising from the

challenged use.16 While courts sometimes adopted different doctrinal paths,

they came to the same conclusion for well over two decades: that program

interfaces needed to achieve compatibility are unprotectable by copyright

law. Only the Federal Circuit’s decision in Oracle III deviated from this

consensus.

In Part II, we discuss the Federal Circuit’s decision in Oracle III, which

departed from these well-established precedents. The Supreme Court’s

Google decision took a broad view of fair use as a limit on computer program

interfaces, and there are hints in the Court’s opinion that Google’s

copyrightability challenge had some merit. Nonetheless, we regard Google

as a lost opportunity to recognize the important role that § 102(b) exclusions

have played in previous software interface cases. Part II also suggests that

the Supreme Court may have viewed the Google case as distinguishable from

earlier interoperability precedents. Most programs developed for the Android

platform were not fully interoperable with other Java platforms. The earlier

interface-uncopyrightability cases, by contrast, generally sought to achieve

complete compatibility. This may help to explain why the Court regarded fair

use as a sounder basis for its ruling in Google’s favor.

Finally, in Part III we explain why denying copyright protection to

interfaces is good policy. Enabling compatibility among programs has

become an even more urgent imperative in today’s digital ecosystem than in

the 1990s, when courts first directly addressed the unprotectability of

interfaces. The ability of second comers to reimplement interfaces has made

software development faster, lowered barriers to entry, promoted competition

and ongoing innovation, and benefited consumers in innumerable ways. The

Google decision has preserved fair use as a defense to claims of infringement

for reimplementing interfaces, but we argue that fair use is an incomplete

solution.17 Courts should reaffirm their longstanding commitment to

15. See, e.g., Pamela Samuelson, Why Copyright Excludes Systems and Processes from the

Scope of Its Protection, 85 TEXAS L. REV. 1921 (2007) (discussing the statutory exclusion of

systems and processes from copyright protection).

16. 17 U.S.C. § 107. For a discussion of this doctrine’s application to computer program

interfaces, see, e.g., Pamela Samuelson & Clark D. Asay, Saving Software’s Fair Use Future, 31

HARV. J.L. & TECH. 535 (2018).

17. In our view, fair use is a defense to charges of copyright infringement but not an affirmative

defense. That is, defendants must assert fair use, but fair use should not be understood as an

affirmative defense in the sense that the defendants bear the ultimate burden of persuasion on it for

reasons set forth in Lydia Pallas Loren, Fair Use: An Affirmative Defense?, 90 WASH. L. REV. 685

(2015). Unfortunately, courts have opined otherwise. See, e.g., Campbell v. Acuff-Rose Music, Inc.,

510 U.S. 569, 590 (1994) (describing fair use as an affirmative defense).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 5

withholding copyright from APIs that enable compatibility. Doing so will

clear the path for an open and competitive internet, something that is

currently under siege by dominant incumbents with walled gardens.18

I. Numerous Courts Have Held That Software Interfaces Necessary for

Achieving Compatibility Are Uncopyrightable.

APIs set forth the rules and procedures by which programs are able to

exchange information with other programs (or with hardware) so the

programs can interoperate and collaboratively carry out specific programmed

tasks.19 A long-standing norm in the computing field has been that everyone

should be obliged to develop their own implementation of an interface, but

everyone should be free to reimplement interfaces in their own independently

written code.20

18. See, e.g., Dan Hunter, Walled Gardens, 62 WASH. & LEE L. REV. 607, 611 (2005)

(advocating for an open-access publishing model in legal scholarship to break through the walled

gardens of commercial databases); Lina M. Khan, The Separation of Platforms and Commerce, 119

COLUM. L. REV. 973, 1097 (2019) (explaining how digital platforms have an economic incentive to

“keep users within their walled gardens” in order to collect as much user data as possible); Salil K.

Mehra, Paradise Is a Walled Garden? Trust, Antitrust, and User Dynamism, 18 GEO. MASON L.

REV. 889, 889–90 (2011) (examining the perception of walled gardens as proprietary and sterile);

Greg Lastowka, Walled Gardens and the Stationers’ Company 2.0, IDP: REVISTA D’INTERNET,

DRET I POLÍTICA, Nov. 2012, at 41, 47 (Spain), https://ssrn.com/abstract=2204465

[https://perma.cc/65JU-DRKH] (discussing the problems caused by intermediary tech platforms

creating walled gardens and using copyright to remove power from creators); Rob Frieden, The

Internet of Platforms and Two-Sided Markets: Legal and Regulatory Implications for Competition

and Consumers (Oct. 13, 2017) (unpublished manuscript), https://privpapers.ssrn

.com/sol3/papers.cfm?abstract_id=3051766 [https://perma.cc/Z63F-7S3E] (discussing platform

monopolies and noting failures in governmental regulation of internet platforms).

19. Oracle I explains that:

Conceptually, an API is what allows software programs to communicate with one

another. It is a set of definitions governing how the services of a particular program

can be called upon, including what types of input the program must be given and what

kind of output will be returned. APIs make it possible for programs (and programmers)

to use the services of a given program without knowing how the service is performed.

APIs also insulate programs from one another, making it possible to change the way a

given program performs a service without disrupting other programs that use the

service.

810 F. Supp. 2d 1002, 1005 (N.D. Cal. 2011).

 Although the Supreme Court’s Google decision characterized the Java API elements at issue

as a “user interface” (because programmers use them to interact with machines), Google LLC v.

Oracle Am., Inc., 141 S. Ct. 1183, 1201 (2021), this Article avoids use of that term as it encompasses

some elements of programs, such as videogame graphics, that do not implicate the interoperability

concerns on which this Article focuses.

20. See, e.g., Alfred Z. Spector, Software, Interface, and Implementation, 30 JURIMETRICS J.

79, 88 (1989) (providing the arguments in favor of this norm from a computer scientist’s

perspective). The Court’s Google decision observed that the jury heard evidence that “shared

interfaces are necessary for different programs to speak to each other” and that “the reuse of APIs

is common in industry.” Google, 141 S. Ct. at 1203–04.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

6 Texas Law Review [Vol. 100:1

In this Part, we show how software developers first enabled, but later

restricted, compatibility by controlling access to APIs and claiming copyright

protection in them. By the mid-1990s, courts had reached a consensus that

those claims were unpersuasive and that copyright protection did not allow a

copyright owner to prevent others from developing similar, compatible

programs.

A. A Pre-History of Interoperability in the Software Industry and

Copyright Protections

In the early days of computing, companies attained commercial success

by selling computer hardware, not computer software.21 Manufacturers of

computers tended to bundle computer programs with their platforms to make

them more attractive to customers.22 They had ample incentives to make

interfaces for their operating systems (OS) available to their customers and

to third parties to encourage them to develop software that would run on their

platforms. All programs were tailored to run on the one particular hardware

and OS environment for which they were developed; programs had to be

rewritten to run on other platforms. There was no such thing as cross-

platform or cross-application compatibility. Running a program on a different

system meant rewriting that program to work with the new system. Niche

service businesses emerged to do software maintenance, system integration,

and customization.23

Beginning in the mid-1960s and into the late-1970s, questions arose

about whether copyrights, patents, or both were or should be available to

computer programs. In 1965 the U.S. Copyright Office decided to accept

registration of the full source code listings of computer programs under its

“rule of doubt.”24 The next year a Presidential Commission recommended

21. See, e.g., JONATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL: INTELLECTUAL

PROPERTY AND INTEROPERABILITY IN THE GLOBAL SOFTWARE INDUSTRY 18–25 (1995)

(describing the computer market industry in the 1950s and 1960s).

22. See, e.g., MARTIN CAMPBELL-KELLY, FROM AIRLINE RESERVATIONS TO SONIC THE

HEDGEHOG: A HISTORY OF THE SOFTWARE INDUSTRY 6 (2003) (explaining that companies used

to provide computer programs for free to purchasers of their hardware).

23. See, e.g., Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in Books,

Photocopies, and Computer Programs, 84 HARV. L. REV. 281, 344–47 (1970) (surveying software

trends that created opportunities for smaller independent companies).

24. See COPYRIGHT OFFICE CIRCULAR 31D (Jan. 1965), reprinted in Duncan M. Davidson,

Protecting Computer Software: A Comprehensive Analysis, 1983 ARIZ. ST. L.J. 611, 652 n.72

(1983) (“[I]n accordance with the policy of resolving doubtful issues in favor of registration

whenever possible, the Copyright Office will consider registration.”); see also Davidson, supra at

739 (defining “rule of doubt”). The Office expressed doubts about whether machine-executable

forms of programs could be copyrighted on account of their functionality. COPYRIGHT OFFICE

CIRCULAR 31D, supra.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 7

against patent protection for computer program innovations, in part because

it perceived copyright protection to be available for software.25

Because some meddlesome new technology issues, such as whether

copyright was a suitable form of legal protection for programs, were holding

up enactment of what would become the Copyright Act of 1976, Congress

decided to create a National Commission on New Technological Uses of

Copyrighted Works (CONTU) to address these issues and make

recommendations about whether Congress should amend the Act to

implement the recommendations.26

In its 1978 Report to Congress, CONTU endorsed copyright protection

for computer programs,27 albeit over dissents expressing concern about the

use of copyright law to protect highly functional works.28 CONTU

recommended a few changes to the 1976 Act to tailor it for programs, which

Congress enacted in 1980.29 CONTU did not address whether interfaces or

25. PRESIDENT’S COMM’N ON THE PATENT SYS., “TO PROMOTE THE PROGRESS OF . . . USEFUL

ARTS”: REPORT OF THE PRESIDENT’S COMMISSION ON THE PATENT SYSTEM 13 (1966). The

Commission states:

Uncertainty now exists as to whether the statute permits a valid patent to be granted

on programs. Direct attempts to patent programs have been rejected on the ground of

nonstatutory subject matter. Indirect attempts to obtain patents and avoid the rejection,

by drafting claims as a process, or a machine or components thereof programmed in a

given manner, rather than as a program itself, have confused the issue further and

should not be permitted.

. . . .

It is noted that the creation of programs has undergone substantial and satisfactory

growth in the absence of patent protection and that copyright protection for programs

is presently available.

Id.

26. CONTU was established by Pub. L. No. 93-573, 88 Stat. 1873 (1974). See NAT’L COMM’N

ON NEW TECH. USES OF COPYRIGHTED WORKS, FINAL REPORT 34 (1978) [hereinafter CONTU

REPORT] (discussing the potential difficulties of extending copyright to computer programs). None

of the CONTU Commissioners had expertise in computer or software technologies. Id. at App. C.

Most of the Commissioners were more concerned about the photocopying issues that Congress

wanted CONTU to address than about the computer-related issues. See id. at 47–78 (discussing

photocopying issue in considerable detail).

27. CONTU REPORT, supra note 26, at 15–16 (asserting that computer programs were already

copyrightable under the 1976 Act). One of us has criticized the CONTU Report for its misstatements

about computer programs, about the unsuitability of copyright law as a form of software protection,

and about whether Congress had already decided to protect machine-readable forms of programs.

See Pamela Samuelson, CONTU Revisited: The Case Against Copyright Protection for Computer

Programs in Machine-Readable Form, 1984 DUKE L.J. 663 (1984) (recommending instead “a new

intellectual property law specifically for machine-readable computer programs”).

28. CONTU REPORT, supra note 26, at 27–37 (dissent of John Hersey) (arguing that programs

were too functional to be copyright subject matter and failed to communicate the works’ expression

to humans as other copyrighted works do); id. at 37–38 (dissent of Rhoda H. Karpatkin).

29. Id. at 12–14 (recommendations of majority). See Pub. L. No. 96-517, § 10, 94 Stat. 3015,

3028 (1980) (codified as amended at 17 U.S.C. §§ 101 (defining “computer program”), 117

(providing limitation to enable copying incidental to use, backup copying, necessary adaptations,

and resales of one’s copy)).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

8 Texas Law Review [Vol. 100:1

any other specific aspects of computer programs were or should be protected

by copyright law. Rather, it assumed that computer programs qualified as

literary works and that courts would be able to apply traditional copyright

doctrines when software developers charged one another with infringement.30

In the 1980s, the computer and software industries experienced

significant growth. In this period, it became common, although not

ubiquitous, for hardware and software developers to treat program interfaces

as trade secrets, available only under restrictive licensing terms. This was

partly aimed to prevent competitors or prospective licensees from taking

advantage of open access to interfaces. A competitor’s reimplementation of

interfaces of a popular platform could enable it to build a system capable of

running programs developed for the original platform and divert prospective

customers from that platform.31 Platform developers also made money by

licensing interface information and often used license restrictions to prevent

application developers from porting their software to other platforms.32 Yet,

customer demand for cross-platform compatibility and industry interest in

writing programs that could connect to different systems had begun to grow

as well.

B. Anti-Compatibility Arguments in Copyright Cases

Two decisions rendered by the Third Circuit Court of Appeals between

1983 and 1986 cast doubt on whether second comers could achieve software

compatibility free from copyright liability. The first was Apple Computer,

Inc. v. Franklin Computer Corp.33 The second was Whelan Associates, Inc.

v. Jaslow Dental Laboratory, Inc.34

Apple introduced its Apple II personal computers to the market in 1977,

along with numerous application programs designed to run on that platform.

By 1983 Apple had sold more than 400,000 of these machines.35 The

30. But see Samuelson, supra note 27, at 727–49 (discussing copyright’s longstanding rule

excluding functional creations from copyright protection). The Google decision noted that the

CONTU Report concluded that “copyright ‘should not grant anyone more economic power than is

necessary to achieve the incentive to create.’” Google LLC v Oracle Am., Inc., 141 S. Ct. 1183,

1198 (2021) (quoting CONTU REPORT, supra note 26, at 12).

31. In the 1980s, IBM and Fujitsu engaged in a lengthy legal battle over Fujitsu’s development

of OS software that enabled its computers to be compatible with IBM mainframes. See, e.g., Anita

Stork, The Use of Arbitration in Copyright Disputes: IBM v. Fujitsu, 3 HIGH TECH. L.J. 241 (1988)

(examining the rapid growth of IBM’s base and Fujitsu’s decision to develop IBM-compatible

equipment and software).

32. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992), discussed infra notes

84–96, was such a case. Accolade considered, but decided against, entering into a license to get

access to the Sega platform interface information because of the exclusivity Sega demanded.

Accolade, 977 F.2d at 1514.

33. 714 F.2d 1240 (3d Cir. 1983), discussed in BAND & KATOH, supra note 21, at 84–91.

34. 797 F.2d 1222 (3d Cir. 1986).

35. Franklin, 714 F.2d at 1242.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 9

popularity of Apple II computers induced many independent software firms

to develop programs to interoperate with that platform, which increased the

value and attractiveness of the platform for consumers. Franklin, which had

sold fewer than 1,000 of its ACE computers, recognized that it would be able

to sell many more computers if its machines were compatible with Apple II.36

To enable this compatibility, Franklin installed copies of Apple’s OS

programs on its ACE computers.

Apple sued Franklin for infringing its copyrights in the OS programs.37

Franklin tried to justify this copying by claiming, among other things, that

this was the only way it could achieve total compatibility with programs

developed for the Apple II platform; hence, the expression of the Apple

programs had merged with its ideas.38 Franklin also argued that the Apple OS

programs were unprotectable processes or methods of operation excluded

from copyright protection under 17 U.S.C. § 102(b).39

The Third Circuit Court of Appeals found Franklin’s merger argument

unpersuasive: “Franklin may wish to achieve total compatibility with

independently developed application programs written for the Apple II, but

that is a commercial and competitive objective which does not enter into the

somewhat metaphysical issue of whether particular ideas and expressions

have merged.”40 Equally unavailing was Franklin’s process/method

exclusion argument. The Third Circuit characterized § 102(b) as merely a

restatement of the idea/expression distinction.41 Giving credence to

Franklin’s argument, the court reasoned, would make all programs

uncopyrightable, contrary to Congressional intent.42

Because Apple had shown a likelihood of success on the merits and

would likely suffer irreparable harm unless an injunction issued, the Third

Circuit thought a preliminary injunction should issue against Franklin’s

further installation of the Apple II OS programs on its ACE machines.43

Notably, though, Franklin’s illegal act was not in reimplementing Apple

interfaces in independent code to achieve compatibility, but rather the

outright copying of the Apple OS. Franklin didn’t even try to develop its own

implementation of the OS programs. Yet, the court’s anti-compatibility dicta

36. Id. at 1243.

37. Id. at 1244. Franklin’s OS programs were virtually identical to Apple’s. Id. at 1245.

38. Id. at 1245, 1253.

39. “In no case does copyright protection for an original work of authorship extend to any idea,

procedure, process, system, method of operation, concept, principle, or discovery, regardless of the

form in which it is described, explained, illustrated, or embodied in such work.” 17 U.S.C. § 102(b).

40. Franklin, 714 F.2d at 1253. Oracle III quoted this Third Circuit dicta favorably when

dismissing the relevance of compatibility considerations to the copyrightability of the Java API

elements that Google used in Android. Oracle III, 750 F.3d 1139, 1371 (Fed. Cir. 2014).

41. Franklin, 714 F.2d at 1252–53.

42. Id. at 1251–54.

43. Id. at 1253–55.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

10 Texas Law Review [Vol. 100:1

and dismissive interpretation of § 102(b)’s statutory exclusions of methods

and processes cast doubt on future interoperability defenses.

A second key case on which anti-compatibility proponents relied was

Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.44 Although

Whelan was not a compatibility case, the Third Circuit’s conception of

computer programs as needing a broad scope of copyright protection to

preserve adequate incentives to develop software and its novel test for

software copyright infringement provided the intellectual framework for

those contending that program interfaces are protectable expressions.45

Jaslow had hired Whelan to develop a computer program to automate

common dental lab business operations.46 Initially, they intended to

commercialize the Dentalab program as partners. After a falling out, Jaslow

decided to develop his own dental lab business program, which was written

in a different computer language for a different computer platform. Whelan

alleged that Jaslow’s program infringed copyright because he’d copied the

“structure, sequence, and organization” (SSO) of her program.47

Whelan was the first appellate court decision to address whether

nonliteral elements of computer programs, such as SSO and “look and feel,”

were protectable by copyright law.48 The Third Circuit reasoned that because

computer programs are “literary works,” the SSO they embody should be as

much protectable expression as the SSO of novels, poems, and other literary

works are. The court articulated a test for judging infringement of software

copyrights: “the purpose or function of a utilitarian work would be the work’s

idea, and everything that is not necessary to that purpose or function would

be part of the expression of the idea.”49 Insofar as other alternatives existed

for achieving that purpose or performing that function, the plaintiffs’ choices

should be regarded as program expressions.50 Because it was not necessary

for Jaslow to use the same file and data structures as Whelan or the same SSO

for certain subroutines, the court concluded there was no merger of idea and

expression. As in Franklin, the Third Circuit regarded § 102(b) to be a

restatement of the idea/expression distinction, finding it unnecessary to

consider whether the subroutine SSO, for example, was an unprotectable

method or process.51 Consequently, the court affirmed the ruling that

44. 797 F.2d 1222 (3d Cir. 1986).

45. Id. at 1236–37. Computer Associates and its amici relied on Whelan in the Altai case

discussed infra text accompanying notes 53–81.

46. The facts and procedural history of the Whelan case are set forth at 797 F.2d at 1225–29.

47. Id. at 1224 n.1 (internal quotation marks omitted) (adopting SSO terminology).

48. Id. See also id. at 1231 (noting the creativity required to design program look and feel and

that “[b]y far the larger portion of the expense and difficulty in creating computer programs is

attributable to the development of the structure and logic of the program,” not to its coding).

49. Id. at 1236 (emphasis omitted).

50. Id. at 1236 & n.28.

51. Id. at 1234–36.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 11

Jaslow’s program infringed Whelan’s copyright.52 Under the Whelan

decision’s proposed test for software copyright infringement, along with its

narrow interpretation of the merger doctrine and of § 102(b)’s exclusions,

software would have been given the most expansive possible scope of

copyright protection.

C. The Pro-Compatibility Decisions

1. Altai.—The first appellate court to directly address whether interfaces

of computer programs needed to achieve compatibility with other programs

were within the scope of software copyright protection was the Second

Circuit Court of Appeals in its 1992 decision Computer Associates Int’l, Inc.

v. Altai, Inc.53

Computer Associates (CA) and Altai were competitors in the market for

scheduling programs designed to run on IBM mainframes. Altai hired a

former CA engineer to work on the development of Zeke, a compatibility

subprogram designed to make it easier for Altai to update its OSCAR

scheduling program so it could exchange information with various IBM OS

programs. Unbeknownst to Altai’s management, that engineer copied a

substantial part of CA’s code in Zeke.54 After learning of this infringement,

Altai’s management provided a new team of engineers with a list of services

and parameter lists from a “clean room” process and directed them to

reimplement these elements in noninfringing code.55 Altai admitted

infringement as to the copied code, but contended that the revised Zeke was

noninfringing.56 CA argued that Zeke still infringed because nonliteral

structural elements of Zeke were substantially similar to and an infringement

of CA’s Adapter program copyright.57 A trial court ruled against CA’s claim

because similarities in the two programs were mainly due to constraints

52. Id. at 1248.

53. 982 F.2d 693 (2d Cir. 1992). Compatibility defenses had succeeded in two earlier district

court decisions. See Secure Servs. Tech., Inc. v. Time & Space Processing, Inc., 722 F. Supp. 1354

(E.D. Va. 1989) (finding that design of software for secure fax machines for sale to U.S. military

was constrained by T-30 protocol); NEC Corp. v. Intel Corp., No. C-84-20799-WPG, 1989 WL

67434 (N.D. Cal. Feb. 6, 1989), (finding that hardware constrained design choices for developing

compatible microcode). In 1989 a group of ten intellectual property scholars reached consensus that

the Franklin dicta about program compatibility being irrelevant to copyrightability was not

consistent with traditional principles of copyright law. See Donald S. Chisum, Rochelle Cooper

Dreyfuss, Paul Goldstein, Robert A. Gorman, Dennis S. Karjala, Edmund W. Kitch, Peter S. Menell,

Leo J. Raskind, Jerome H. Reichman & Pamela Samuelson, LaST Frontier Conference Report on

Copyright Protection of Computer Software, 30 JURIMETRICS J. 15, 19 (1989).

54. Altai, 982 F.2d at 699–700. For an excellent detailed review of the Altai litigation, see BAND

& KATOH, supra note 21, at 112–30.

55. Altai, 982 F.2d at 700.

56. Id. at 701.

57. Id. at 702.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

12 Texas Law Review [Vol. 100:1

imposed by the need to be compatible with and provide services to the IBM

OS programs.58

The Second Circuit affirmed the trial court’s ruling in favor of Altai.59

It based its framework on a more expansive view of copyright’s

idea/expression distinction. Developed by the Supreme Court approximately

150 years ago in Baker v. Selden,60 and since codified,61 the idea/expression

distinction ensures that copyright law protects only the original expression of

an idea, method, or system, and not the idea, method, or system itself, or any

“necessary incidents” to that idea, method, or system.62 Altai articulated a

new “Abstraction–Filtration–Comparison” (AFC) test to apply that

distinction to software copyright infringement.63 The first step of this test

calls for constructing a hierarchy of abstractions for the plaintiff’s program.

The court articulated six layers in its program abstraction hierarchy from

most abstract (the general purpose or function of the program) to the most

concrete and specific (source and object code).64 The second step calls for

filtering out unprotectable elements to ensure that the third and final

58. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 775 F. Supp. 544, 562 (E.D.N.Y. 1991). The

district court criticized and declined to follow Whelan’s overbroad test for software copyright

infringement. Id. at 558–60. The Software Publishers Association (SPA) filed an amicus curiae brief

in support of CA’s appeal to the Second Circuit, criticizing the district court’s Altai opinion for

failing to follow Whelan. See Brief Amicus Curiae of the Software Publishers Association, Altai,

982 F.2d 693 (No. 91-7893), 1991 WL 11010230. The main goal of the SPA brief was to persuade

the Second Circuit to adopt the Whelan approach to protecting program structures. Id. at 7–8. The

SPA brief did not directly argue that program interfaces were protectable by copyright law.

However, it characterized parameter lists, which set forth interface elements, as part of the SSO that

copyright law protects in software just as in other literary works. Id. at 8. But see Brief Amicus

Curiae of Compaq Computer Corp., Novell, Inc., and Borland Int’l, Inc., Altai, 982 F.2d 693 (No.

91-7893), 1992 WL 12013079, for an amicus brief filed by two of the larger members of SPA and

one of its former members strongly objecting to the SPA’s endorsement of Whelan.

59. Altai, 982 F.2d at 714–15. In support of Altai on the compatibility issue was the Brief

Amicus Curiae of Am. Comm. for Interoperable Sys., Altai, 982 F.2d 693 (No. 91-7893), 1991 WL

11010231.

60. 101 U.S. 99 (1879).

61. 17 U.S.C. § 102(b).

62. Baker, 101 U.S. at 103. Baker is often credited as the origin of the merger doctrine because

of its statement that “necessary incidents” to methods and other useful arts are not within the scope

of copyright protection. But see Samuelson, supra note 14, 419–25 (“While the holding in Baker is

consistent with the merger doctrine, Baker cannot fairly be said to have given birth to it.”). In this

respect, the merger doctrine is best understood as a corollary to § 102(b)’s exclusion of ideas,

methods, and systems. Id. at 451–53.

63. Altai, 982 F.2d at 706–11. The court rejected the Third Circuit’s Whelan test for software

copyright infringement under which nonliteral elements of programs were protectable unless there

was only one way to structure those aspects of the programs. Id. at 705–06. The Altai AFC test for

software copyright infringement has been followed and cited approvingly by every subsequent

appellate court to have considered it. See infra note 82 (discussing subsequent cases).

64. Id. at 706–07. By directing the construction of abstractions hierarchies when analyzing

nonliteral software copyright infringement claims, the Second Circuit rejected Whelan’s flattened

conception of the protectability of all nonliteral elements unless no alternatives were available.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 13

comparison step focuses on similarities in the two programs’ expressions, not

on similarities in unprotectable elements. 65

Altai identified three categories of unprotectable elements that must be

filtered out before proceeding to the comparison step: first, those that are

dictated by efficiency considerations; second, those that are dictated by

external factors; and third, those that are in the public domain.66 It identified

several subcategories of elements that it viewed as dictated by external

factors.67 The court found no error in the district court’s conclusion that

similarities in the CA and Altai parameter lists were largely dictated by

functional considerations or were in the public domain.68 The lists of services

were, moreover, “dictated by the nature of other programs with which [they

were] designed to interact and, thus, [are] not protected by copyright.”69 The

Altai decision is particularly notable because, unlike Franklin, it suggested

that similarities driven by a competitor’s desire for compatibility were

functional and therefore not protectable.

Although the Second Circuit invoked copyright’s scenes a faire doctrine

as the basis for characterizing these five types of unprotectable elements, it

twice spoke of these elements as “dictated by external factors.”70 “Dictated

by” is the language of the merger doctrine, not the scenes a faire doctrine.71

Nonetheless, the Second Circuit agreed with the lower court that the

similarities between CA’s and Altai’s scheduling programs should be filtered

out when necessary to be compatible with other programs, when dictated by

functional demands of those programs, or when elements are in the public

domain.72 Hence, the court affirmed the finding in Altai’s favor on the

copyright claim. It concluded that compatibility was a practical programming

and business necessity that could not be protected by copyright. Specifically,

the court noted:

65. Id. at 707–10.

66. Id. at 707. One of us has noted elsewhere that the Second Circuit failed to direct filtration

of procedures, processes, systems, and methods of operation in keeping with 17 U.S.C. § 102(b).

Pamela Samuelson, Functionality and Expression in Computer Programs: Refining the Tests for

Software Copyright Infringement, 31 BERKELEY TECH. L.J. 1215, 1235–37 (2016). This failure is

odd because the legislative history reveals that Congress added these exclusions to the copyright act

to ensure that the scope of copyright protection for computer programs would not be construed too

broadly. H.R. REP. NO. 94-1476, at 57 (1976); S. REP. NO. 94-473, at 54 (1975). Subsequent cases

have adapted the Altai AFC test to filter out unprotectable methods and processes. See, e.g., Gates

Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836–37, 845 (10th Cir. 1993) (holding that

processes are not protectable under § 102(b) and must be filtered out).

67. Altai, 982 F.2d at 709–10.

68. Id. at 715.

69. Id.

70. Id. at 709–10.

71. See, e.g., Samuelson, supra note 14, at 447–50 (distinguishing the merger and scenes a faire

doctrines).

72. Altai, 982 F.2d at 714–15.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

14 Texas Law Review [Vol. 100:1

“[I]n many instances it is virtually impossible to write a program to

perform particular functions in a specific computing environment

without employing standard techniques.” 3 NIMMER § 13.03[F][3], at

13-65. This is a result of the fact that a programmer’s freedom of

design choice is often circumscribed by extrinsic considerations such

as (1) the mechanical specifications of the computer on which a

particular program is intended to run; (2) compatibility requirements

of other programs with which a program is designed to operate in
conjunction; (3) computer manufacturers’ design standards;

(4) demands of the industry being serviced; and (5) widely accepted

programming practices within the computer industry.

. . . .

. . . [T]he overlap exhibited between the list of services required for

both ADAPTER and OSCAR 3.5 was “determined by the demands of

the operating system and of the applications program to which it [was]

to be linked through ADAPTER or OSCAR. . . .” [Comput. Assocs.
Int’l, Inc. v. Altai, Inc., 775 F. Supp. 544, 562 (E.D.N.Y. 1991).] In

other words, this aspect of the program’s structure was dictated by the

nature of other programs with which it was designed to interact and,

thus, is not protected by copyright.73

The Altai decision was notable for several other reasons. It soundly

criticized Whelan for its overbroad software copyright infringement test, for

its inaccurate understanding of computer science, and for its focus on

metaphysical rather than practical considerations.74 Unlike Whelan, the

Second Circuit’s Altai decision recognized that “[t]he essentially utilitarian

nature of a computer program . . . complicates the task of distilling its idea

from its expression.”75 In contrast to conventional literary and artistic works,

“computer programs hover even more closely to the elusive boundary line

described in § 102(b).”76 Interpreting the scope of copyright protection for

programs too broadly could result in anti-competitive effects.77 The Second

Circuit rejected CA’s and its amici’s argument that investments in software

development would be harmed unless computer programs were accorded

strong copyright protection. The court noted that Whelan had been decided

before the Supreme Court’s Feist Publications, Inc. v. Rural Telephone

Service Co.78 decision, which “teaches that substantial effort alone cannot

73. Id. at 709–10, 715 (emphasis added).

74. Id. at 705–06. The Second Circuit agreed with Whelan on the point that some nonliteral

elements of computer programs could be copyright-protectable; however, it did not find SSO to be

a helpful way to conceptualize protectable elements in programs. See id. at 706 (proposing AFC test

instead).

75. Id. at 704.

76. Id.

77. Id. at 711.

78. 499 U.S. 340 (1991).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 15

confer copyright status on an otherwise uncopyrightable work,” and observed

that incentive-based arguments for broad copyright protections would, if

adopted, have “a corrosive effect on certain fundamental tenets of copyright

doctrine.”79 As a result, it “may well be that the Copyright Act serves as a

relatively weak barrier against public access to the theoretical interstices

behind a program’s source and object codes” given the intermixture of

functionality and expression in programs.80 The court conjectured that patent

law might be a “more appropriate rubric” for IP protection for software, and

even suggested that Congress should convene a CONTU II to consider

copyright scope issues.81

2. Altai’s Progeny.—The Altai decision swiftly led to widespread

rejections of Whelan, particularly in cases involving compatibility.82 Within

months after the Altai decision, the Ninth Circuit concurred in its conclusion

that software developers should be able to achieve compatibility free from

copyright liability in another landmark software copyright case, this one

involving copyright’s fair use doctrine. That doctrine permits certain uses

that would otherwise infringe copyright, particularly if they serve a

transformative or other socially useful purpose or don’t cause market harm.83

In Sega Enterprises, Ltd. v. Accolade, Inc.,84 the Ninth Circuit echoed the

Altai decision in its characterization of computer programs as utilitarian

works that “contain many logical, structural, and visual display elements that

are dictated by the function to be performed, by considerations of efficiency,

or by external factors such as compatibility requirements and industry

79. Altai, 982 F.2d at 711–12 (citing Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 111 S. Ct. 1282,

1295 (1991)).

80. Id. at 712.

81. Id. It further noted that many of the software copyright decisions “reflect the courts’ attempt

to fit the proverbial square peg in a round hole.” Id.

82. In addition to the several decisions discussed in this section, we note that the Tenth Circuit

followed the Altai decision and adopted its test and rationale in Gates Rubber Co. v. Bando Chem.

Indus., Ltd., 9 F.3d 823, 836–37, 845 (10th Cir. 1993) as did the Fifth Circuit in Eng’g Dynamics,

Inc. v. Structural Software, Inc., 26 F.3d 1335, 1342–44 (5th Cir. 1994), clarified, 46 F.3d 408 (5th

Cir. 1995). Thus, by 1995, Altai had become the leading software copyright case. See, e.g., Mark

A. Lemley, Convergence in the Law of Software Copyright?, 10 HIGH TECH. L.J. 1, 14–15 (1995)

(discussing Altai’s endorsement by multiple circuit courts in the United States and by courts in other

countries). This continues to be true. See Pamela Samuelson, A Fresh Look at Tests for Nonliteral

Copyright Infringement, 107 NW. U. L. REV. 1821, 1838–39, 1838 n.108 (2013) (noting that as of

Feb. 8, 2013, the Altai decision had been cited 236 times and by courts in every circuit except the

D.C. Circuit).

83. 17 U.S.C. § 107. The test for fair use is multi-factor and fact-specific, and a full discussion

is beyond the scope of this Article.

84. 977 F.2d 1510 (9th Cir. 1992).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

16 Texas Law Review [Vol. 100:1

demands.”85 These considerations meant, said the Ninth Circuit, that the

scope of copyright protection for computer programs was thinner than for

other types of literary works.86

The main legal question in Accolade was whether the defendant had

infringed copyright by making copies of Sega programs in the course of

reverse engineering that code in order to get access to information necessary

for Accolade to adapt its videogames so they could run on the Sega Genesis

platform.87 The Ninth Circuit decided that Accolade had a legitimate purpose

in making these intermediate copies because this was the only way that

Accolade could get access to that information.88 This consideration favored

Accolade’s fair use defense because the Sega interface constituted the

functional requirements for achieving compatibility, which the court viewed

as unprotectable “procedures” that were excluded from copyright protection

under § 102(b).89 To rule that Accolade’s reverse-engineering copies were

infringements would give Sega “a de facto monopoly” over these functional

elements of its programs.90 Thus, while Sega was decided on fair use grounds,

its fair use analysis depends heavily on the underlying conclusion that

interfaces were unprotectable procedures.

The Accolade decision also cited Altai and quoted from the CONTU

Commission’s report for the proposition that “when specific instructions,

85. Id. at 1524. The Ninth Circuit said it was “in wholehearted agreement” with Altai about

software copyright decisions as akin to square pegs in round holes. Id. It also cited approvingly to

Altai’s repudiation of the Whelan test for software copyright infringement. Id. at 1525. Although

the Ninth Circuit’s Accolade decision was influenced by Altai, that circuit has not adopted the Altai

AFC test as such when reviewing software copyright decisions. Yet, like the Second Circuit, the

Ninth Circuit engages in filtration of unprotectable elements. See Apple Comput., Inc. v. Microsoft

Corp., 35 F.3d 1435, 1438–39 (9th Cir. 1994) (approving of a trial court’s application of “limiting

doctrines of originality, functionality, standardization, scenes a faire, and merger,” as well as

upholding its filtration of user interface processes).

86. Accolade, 977 F.2d at 1526.

87. Id. at 1513–15. The American Committee for Interoperable Systems (ACIS) filed an amicus

curiae brief in support of Accolade, just as it had in support of Altai. Brief Amicus Curiae of Am.

Comm. for Interoperable Sys., Accolade, 977 F.2d 1510 (No. 3:91-CV-03871).

88. Accolade, 977 F.2d at 1514, 1525–26. See also Atari Games Corp. v. Nintendo of America,

Inc., 975 F.2d 832, 843–44 (Fed. Cir. 1992) (asserting that intermediate copying can be a fair use

when it is necessary “to understand the ideas and processes in a copyrighted work”) (approvingly

cited in Accolade, 977 F.2d at 1525). The Federal Circuit correctly anticipated that the Ninth Circuit

would hold that making copies of computer programs to get access to information necessary to

achieving interoperability would be fair use. Id. at 842–44. With ample citations to Altai, the Federal

Circuit in Atari Games accepted that when assessing software copyright infringement claims, courts

“must filter out as unprotectable the ideas, expression necessarily incident to the idea, expression

already in the public domain, expression dictated by external factors (like the computer’s

mechanical specifications, compatibility with other programs, and demands of the industry served

by the program), and expression not original to the programmer or author.” Id. at 839.

89. Accolade, 977 F.2d at 1526. See also Sony Comput. Ent., Inc. v. Connectix Corp., 203 F.3d

596, 604 (9th Cir. 2000) (characterizing program interfaces as unprotectable procedures).

90. Accolade, 977 F.2d at 1526.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 17

even though previously copyrighted, are the only and essential means of

accomplishing a given task, their later use by another will not amount to

infringement.”91 This statement, which plainly expresses the merger doctrine,

was relevant in Accolade because the defendant’s games would not run on

the Sega platform unless they included a small segment of Sega code that

caused a Sega trademark to pop up.92

Compatibility was at the heart of Sega’s fair use finding. Accolade

wanted to make video games compatible with Sega’s game console over

Sega’s objection. To make its games run on Sega’s platform, Accolade

copied the entirety of Sega’s computer code in order to “reverse engineer”

the code and extract only the APIs—the portions necessary to ensure

compatibility. The Ninth Circuit held that was a fair use even though it

involved intermediate copying of the entirety of the code, because making

that intermediate copy was necessary to get access to the interface

components—which the Ninth Circuit found to be “unprotected.”93 The court

emphasized that “because Accolade has a legitimate interest in gaining such

access (in order to determine how to make its cartridges compatible with the

Genesis console),” its copying of the code to replicate the interface

components was a fair use.94

The fact that Accolade sought to write its own original programs, not to

copy Sega’s programs, loomed large in the Ninth Circuit’s analysis:

Accolade copied Sega’s software solely in order to discover the

functional requirements for compatibility with the Genesis console—

aspects of Sega’s programs that are not protected by copyright. With

respect to the video game programs contained in Accolade’s game

cartridges, there is no evidence in the record that Accolade sought to

avoid performing its own creative work. Indeed, most of the games

that Accolade released for use with the Genesis console were

originally developed for other hardware systems. . . . [A]lthough

Accolade’s ultimate purpose was the release of Genesis-compatible

games for sale, its direct purpose in copying Sega’s code, and thus its

direct use of the copyrighted material, was simply to study the

functional requirements for Genesis compatibility so that it could

modify existing games and make them usable with the Genesis

console. . . . On these facts, we conclude that Accolade copied Sega’s

code for a legitimate, essentially non-exploitative purpose95

91. Id. at 1524 (first quoting CONTU REPORT, supra note 26, at 20; and then citing Comput.

Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992)).

92. Id. at 1524 n.7.

93. Id.

94. Id. at 1520.

95. Id. at 1522–23 (citation omitted).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

18 Texas Law Review [Vol. 100:1

Nor was the court troubled that Accolade engaged in verbatim copying

of some program interfaces in order to achieve that legitimate compatibility

purpose:

[C]omputer programs are, in essence, utilitarian articles—articles that

accomplish tasks. As such, they contain many logical, structural, and

visual display elements that are dictated by the function to be

performed, by considerations of efficiency, or by external factors such

as compatibility requirements and industry demands. . . . “[W]hen

specific instructions, even though previously copyrighted, are the only

and essential means of accomplishing a given task, their later use by

another will not amount to infringement.”96

Thus, while Sega was a fair use case, the reason the court relied on fair

use was that Accolade copied all of Sega’s code, not just the APIs. The Ninth

Circuit clearly treated the APIs themselves as uncopyrightable, and indeed

found that the copying of protected code was justified because it gave

Accolade access to the unprotected APIs.

In Sony Computer Entertainment, Inc. v. Connectix Corp.,97 the Ninth

Circuit went still further, holding that it was fair use to create an emulator of

the Sony game console—copying the code not just to reverse engineer it but

to test how programs worked with it—because the purpose was to produce a

new product that worked with the old system:

We find that Connectix’s Virtual Game Station is modestly

transformative. The product creates a new platform, the personal

computer, on which consumers can play games designed for the Sony

PlayStation. This innovation affords opportunities for game play in

new environments, specifically anywhere a Sony PlayStation console

and television are not available, but a computer with a CD-ROM drive

is. More important, the Virtual Game Station itself is a wholly new

product, notwithstanding the similarity of uses and functions between

the Sony PlayStation and the Virtual Game Station.98

The fact that Sony might lose sales to the Connectix system did not

militate against fair use on the fourth factor. “[B]ecause the Virtual Game

Station is transformative, and does not merely supplant the PlayStation

console, the Virtual Game Station is a legitimate competitor in the market for

platforms on which Sony and Sony-licensed games can be played,” so the

loss of market share was not attributable to copyright infringement, but to

legitimate competition.99 The Ninth Circuit reversed the grant of a

preliminary injunction against Connectix’s emulator.

96. Id. at 1524 (citations omitted) (quoting CONTU Report, supra note 26, at 20).

97. 203 F.3d 596 (9th Cir. 2000).

98. Id. at 606.

99. Id. at 607.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 19

The Eleventh Circuit joined the Altai-inspired compatibility bandwagon

in Bateman v. Mnemonics, Inc.100 Mnemonics’s main business was licensing

of an application program that automated parking garage operations.

Mnemonics initially developed its software to run on Bateman’s OS. After

Bateman terminated that OS license, Mnemonics decided to develop an

alternative OS so it could stay in business and continue to commercialize its

software.101 Bateman argued that Mnemonics could not raise an Altai

compatibility challenge because Bateman thought the Altai filtration step

applied only to nonliteral elements of computer programs, not to literal

copying of some Bateman code.102 The trial court agreed and accordingly

instructed the jury, which rendered a verdict of infringement for Bateman.

On appeal, Mnemonics argued that interface specifications of computer

programs are uncopyrightable as a matter of law, and alternatively, that some

copying of Bateman’s code was justifiable if necessary to achieve

compatibility.103 The Eleventh Circuit rejected the first argument, but found

the second argument persuasive; it consequently overturned the verdict

because of the trial judge’s erroneous jury instructions.104 The Bateman

decision cited approvingly to Altai and Accolade in support of this holding.

The court agreed with Mnemonics that it should not be legally obliged to

rewrite its application program so that it would run on an entirely different

OS program.105

The Eleventh Circuit was, however, agnostic about “[w]hether

[copyright] protection is unavailable because these [external constraint]

factors render the expression unoriginal, nonexpressive per 17 U.S.C.

§ 102(b), or whether these factors compel a finding of fair use, copyright

estoppel, or misuse” because whatever the legal doctrine, “the result is to

deny copyright protection to portions of the computer program.”106 Although

the Eleventh Circuit did not specify which doctrine was most applicable

when some copying of code was “dictated by compatibility requirements,”107

its “dictated by” language evokes the doctrine of merger.

Like the Ninth Circuit in Accolade and the Eleventh Circuit in Bateman,

the Sixth Circuit in Lexmark International, Inc. v. Static Control

100. 79 F.3d 1532, 1547 (11th Cir. 1996).

101. Id. at 1538–40.

102. Id. at 1543–45.

103. Id. at 1547. As in Altai and Accolade, ACIS filed a brief in support of Mnemonics’ appeal

of a jury finding of infringement on the uncopyrightability of program interfaces. Brief Amicus

Curiae of Am. Comm. for Interoperable Sys., Bateman, 79 F.3d 1532 (No. 93-3234), 1994 WL

16129974.

104. Bateman, 79 F.3d at 1547.

105. Id. at 1547 n.31.

106. Id. at 1547.

107. Id.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

20 Texas Law Review [Vol. 100:1

Components, Inc.108 decided that exact copying of another developer’s

program does not infringe when necessary for interoperability.109 Unlike the

plaintiffs in Altai, Accolade, and Bateman, Lexmark’s primary business was

not the development of software, but rather the manufacture and sale of

printers and printer cartridges. In an effort to thwart competitors from making

and selling printer cartridges capable of running in its printers, Lexmark

embedded programs in its printers and printer cartridges that exchanged

authentication messages so that only Lexmark’s printer cartridges would

work in Lexmark printers.

Static’s primary business was manufacturing and selling semiconductor

chips. Some of its customers wanted to sell printer cartridges that would work

with Lexmark printers. To enable this, Static installed copies of the Lexmark

printer cartridge software on its chips. Lexmark then sued Static for copyright

infringement and persuaded a trial court to issue a preliminary injunction

forbidding Static to reproduce copies of the Lexmark printer cartridge

program.110

The Sixth Circuit characterized the Lexmark programs as “lock-out”

codes that “fall on the functional-idea rather than the original-expression side

of the copyright line.”111 But it did not apply the pure AFC test from Altai.

Rather, the court invoked two other copyright doctrines that flow from the

idea/expression distinction to protect compatibility. The first, the scenes a

faire doctrine, makes clear that § 102(b) treats as unprotectable not only the

idea itself, but various stock techniques, concepts, and building blocks one

might use in implementing that idea.112 The other, the merger doctrine,

extends the idea/expression limitation to deny protection to a work altogether

when there are only a limited number of ways of implementing that idea.113

108. 387 F.3d 522 (6th Cir. 2004).

109. Id. at 536. CCIA filed an amicus curiae brief in support of Static Controls. Brief Amicus

Curiae of Comput. & Commc’ns Indus. Ass’ns in Support of Static Control Components, Inc.,

Lexmark, 387 F.3d 522 (No. 03-5400), 2003 WL 22318988.

110. Lexmark, 387 F.3d at 531–32. The trial court also found that Lexmark was likely to succeed

with its claim that Static was liable for circumvention of technical measures under 17 U.S.C. § 1201

because the copied code bypassed the authentication sequence between the printer and printer

cartridge software. Id. at 532. The Sixth Circuit was unconvinced that Lexmark would succeed on

that claim. Id. at 545–50.

111. Id. at 536.

112. See, e.g., Atari, Inc. v. N. Am. Philips Consumer Elec. Corp., 672 F.2d 607, 616 (7th Cir.

1982) (defining scenes a faire as “incidents, characters or settings which are as a practical matter

indispensable, or at least standard, in the treatment of a given topic”) (quoting Alexander v. Haley,

460 F. Supp. 40, 45 (S.D.N.Y. 1978)); see also Leslie A. Kurtz, Copyright: The Scenes a Faire

Doctrine, 41 FLA. L. REV. 79, 80 (1989) (tracing this doctrine to Cain v. Universal Pictures Co., 47

F. Supp. 1013, 1017 (S.D. Cal. 1942), in which a movie had allegedly copied a scene from plaintiff’s

novel).

113. Morrissey v. Procter & Gamble Co., 379 F.2d 675, 678 (1st Cir. 1967) (“When the

uncopyrightable subject matter is very narrow, so that ‘the topic necessarily requires,’ if not only

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 21

When “compatibility requires that a particular code sequence be included in

the component device to permit its use, the merger and scenes a faire

doctrines generally preclude the code sequence from obtaining copyright

protection.”114 The Sixth Circuit held that the trial court had erred in refusing

to consider whether external factors such as compatibility requirements had

narrowed the range of options available to Static under the merger and scenes

a faire doctrines.115

Although Lexmark’s expert testified that Static could have written a new

interoperable printer-cartridge program instead of copying Lexmark’s

program,116 Static’s expert testified that the alternatives identified by

Lexmark’s expert were “trivial” or “so inefficient and repetitive as to be

‘ridiculous.’”117 Moreover, Static’s expert offered “unchallenged testimony

that it would be ‘computationally impossible’ to modify the checksum value”

that the Lexmark printer program sent to the printer-cartridge program.118 In

view of this evidence, the Sixth Circuit concluded that the merger and scenes

a faire doctrines precluded Lexmark from claiming that Static infringed the

printer-cartridge program.119

Seemingly out of an abundance of caution, the Sixth Circuit decided to

address Static’s fair use defense as well.120 Static had not, the court noted,

copied the Lexmark code to exploit its commercial value as a copyrighted

work, but rather for a different purpose: namely, to enable printer cartridges

to work in Lexmark printers.121 Nor was Static’s use of the Lexmark code

harming the marketability of that program. This use may have harmed

Lexmark’s market for selling printer cartridges, but this was not the type of

market harm that copyright law aims to prevent.122

one form of expression, at best only a limited number, to permit copyrighting would mean that a

party or parties, by copyrighting a mere handful of forms, could exhaust all possibilities of future

use of the substance.” (citations omitted)).

114. Lexmark, 387 F.3d at 536.

115. Id. at 537–38.

116. Id. at 539.

117. Id. at 540.

118. Id. at 542.

119. Id. at 535, 540–42.

120. Id. at 544–45. The Google decision cites approvingly to Lexmark’s fair use analysis.

Google LLC v. Oracle Am., Inc., 141 S. Ct. 1183, 1198 (2021). While the Sixth Circuit in Lexmark

addressed the fair use defense out of an abundance of caution, 387 F.3d at 544–45, the court relied

on merger and scenes a faire more than fair use as the basis for ruling against Lexmark’s copyright

claim. Id. at 534–44.

121. Lexmark, 387 F.3d at 544.

122. Id. at 545.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

22 Texas Law Review [Vol. 100:1

A final appellate court case from this period is Mitel, Inc. v. Iqtel, Inc.123

To activate and manipulate features of its telephone-call-controller system,

Mitel developed a set of more than sixty command codes. When Iqtel entered

the call-controller market, it decided it could successfully compete with Mitel

only if its call controllers were compatible with Mitel’s. To enable

compatibility, Iqtel programmed its call controllers to accept Mitel’s

command codes and transform them into corresponding Iqtel codes.124 Mitel

claimed that this copying of its codes infringed copyright.

The Tenth Circuit upheld the lower court’s denial of a preliminary

injunction motion in part because “much of the expression in Mitel’s

command codes was dictated by the proclivities of technicians and limited

by significant hardware, compatibility, and industry requirements.”125

Mitel’s product-management team had, for instance, adopted many of the

values in the Mitel codes “in response to customer demand or to ensure

compatibility with equipment already installed in the central offices of

Mitel’s customers.”126 Others were “dictated by the limits inherent in the

public telephone networks that the call controllers accessed.”127 The court

relied on the scenes a faire doctrine as the basis for ruling these elements of

the Mitel command codes were unprotectable by copyright law.128 And like

the Ninth Circuit in Connectix, the court did not treat the fact that the

defendant’s goal in producing a compatible product was to compete with the

plaintiff as a reason to extend copyright protection to the command codes. To

123. 124 F.3d 1366 (10th Cir. 1997). Call controllers are hardware devices that automate

various telephone utilities such as the selection of particular long-distance carriers. Id. at 1368.

Similarities in software-application programs due to common elements have more generally been

held unprotectable under the scenes a faire doctrine. See, e.g., Hutchins v. Zoll Med. Corp., 492

F.3d 1377, 1384–85 (Fed. Cir. 2007) (holding no copyright in common phrases for computerized

system for performing cardiopulmonary-resuscitation procedures); Brown Bag Software v.

Symantec Corp., 960 F.2d 1465, 1472–74, 1478 (9th Cir. 1992) (holding no copyright in user-

interface similarities common to outlining programs).

124. Mitel, 124 F.3d at 1368–69.

125. Id. at 1375. See also Plains Cotton Coop. Assoc. of Lubbock v. Goodpasture Serv., Inc.,

807 F.2d 1256, 1262 (5th Cir. 1987) (declining to extend copyright protection to elements of a

program’s user interface that were dictated by “the externalities of the cotton market” and other

“market factors”); Auto Inspection Servs., Inc. v. Flint Auto Auction, Inc., No. 06-15100, 2006 WL

3500868, at *3, 7 (E.D. Mich. Dec. 4, 2006) (stating that the software’s onscreen displays were

written to “conform to all industry requirements and follow the normal and logical flow of a vehicle

inspection”).

126. Mitel, 124 F.3d at 1375.

127. Id.

128. Id. at 1374–76. The court regarded other elements of the Mitel command codes as lacking

originality. Id. at 1373–74. See also Assessment Techs. of WI, LLC v. WIREdata, Inc., 350 F.3d

640, 644–45 (7th Cir. 2003) (characterizing the assertion of a copyright infringement claim based

on extraction of unprotectable data from a database as misuse).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 23

the contrary, customer demands for compatible products were a reason that

justified copying interface components.129

3. Lotus v. Borland and Methods of Operation.—The interests of users in

the enablement of compatibility also drove the result in Lotus Development

Corp. v. Borland International, Inc.130 Lotus sued Borland for copyright

infringement because its competing spreadsheet program reproduced the

Lotus command hierarchy in its “[e]mulation” user interface.131 The goal was

to enable users who had constructed macros in the Lotus 1-2-3 macro

language to execute them on Borland’s platform and to take advantage of the

users’ investments in learning the Lotus 1-2-3 command hierarchy.132

Borland’s principal defense was that the command hierarchy was an

integral part of the Lotus macro system or method of operation, which was

unprotectable by copyright law under § 102(b). Borland argued this was

closely akin to the selection and arrangement of columns and headings for a

bookkeeping system which the Supreme Court had held unprotectable in

Baker v. Selden.133

Like the Third Circuit in Franklin and Whelan, the district court in

Borland regarded § 102(b) as excluding from copyright protection only

abstract elements of protected works.134 Because Lotus could have arranged

its spreadsheet commands in a large number of ways, the particular way it

had selected and arranged them was, in the district court’s view, protectable

expression.135 That court found Borland’s copying of them to infringe.136

On appeal, Borland emphasized that its emulation interface had to

embody the 1-2-3 command hierarchy using exactly the same commands in

exactly the same order to enable user macros to be executed on Borland’s

platform in support of its § 102(b) challenge to the copyrightability of the

129. Mitel, 124 F.3d at 1375–76. One of us has explained why compatibility favors a finding of

fair use of APIs, including the utilitarian nature of APIs and a misunderstanding of the role of “good

faith” in fair use. Samuelson & Asay, supra note 16, at 544–61.

130. 49 F.3d 807 (1st Cir. 1995), aff’d by an equally divided court, 516 U.S. 233 (1995) (per

curiam). ACIS filed amicus curiae briefs in support of Borland with the First Circuit and with the

Supreme Court. Brief Amicus Curiae of Am. Comm. for Interoperable Sys., Borland, 49 F.3d 807

(No. 93-2214), 1993 WL 13624510 [hereinafter ACIS Borland Amicus]; Brief Amici Curiae of Am.

Comm. for Interoperable Sys. and Comput. & Commc’ns Indus. Ass’n in Support of Respondent,

Borland, 516 U.S. 233 (1996) (No. 94-2003), 1995 WL 728487 [hereinafter ACIS-CCIA Borland

Amicus].

131. Borland, 49 F.3d at 810.

132. Id.

133. Id. at 813–14. The First Circuit did not find Baker to be as closely analogous as Borland

asserted. Id. at 814.

134. Lotus Dev. Corp. v. Borland Int’l, Inc., 799 F. Supp. 203, 216–17 (D. Mass. 1992).

135. Id. at 217–18.

136. Id. at 223.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

24 Texas Law Review [Vol. 100:1

Lotus command hierarchy.137 The First Circuit found “absurd” Lotus’s theory

that users should have to learn new sets of commands to perform the same

functions on a different software platform.138 “The fact that there may be

many different ways to operate a computer program . . . using a set of

hierarchically arranged command terms[] does not make the actual method

of operation chosen copyrightable; it still functions as a method for operating

the computer and as such is uncopyrightable.”139

The First Circuit also balked at the idea that users should have to rewrite

their macros using a different command hierarchy. “We think that forcing the

user to cause the computer to perform the same operation in a different way

ignores Congress’s direction in § 102(b) that ‘methods of operation’ are not

copyrightable.”140 But rather than rely directly on the idea/expression

distinction or the merger and scenes a faire doctrines, the court turned to

other language in § 102(b) that excludes from protection not only ideas, but

also “system[s]” and “method[s] of operation.”141 Lotus’s menu command

hierarchy, the court said, was like the buttons on a VCR: the buttons are

labeled, but the buttons themselves aren’t copyrightable because they control

the operation of the device.142

Judge Boudin’s concurrence in Borland elaborated on these

observations. He found it “very hard to see that Borland has shown any

interest in the Lotus menu except as a fallback option for those users already

committed to it by prior experience or in order to run their own macros using

the 1-2-3 commands.”143 Judge Boudin observed that if Lotus could protect

the command hierarchy through copyright, “users who have learned the

command structure of Lotus 1-2-3 or devised their own macros are locked

into Lotus, just as a typist who has learned the QWERTY keyboard would be

captive of anyone who had a monopoly on the production of such a

keyboard.”144 If Borland developed a superior program, “good reasons exist

for freeing it to attract old Lotus customers: to enable the old customers to

137. Borland, 49 F.3d at 810, 815, 818. The Solicitor General’s amicus curiae brief in response

to Google’s first Petition for Certiorari in the Oracle case suggested that the merger doctrine was a

more persuasive rationale for the Borland decision. See Brief for the U.S. as Amicus Curiae at 20,

Google, Inc. v. Oracle America, Inc., 576 U.S. 1071 (2015) (No. 14-410), 2015 WL 2457656

[hereinafter U.S. Amicus Brief] (giving more attention to the merger doctrine rationale).

138. Borland, 49 F.3d at 818.

139. Id.

140. Id.

141. 17 U.S.C. § 102(b).

142. Borland, 49 F.3d at 817.

143. Id. at 820 (Boudin, J., concurring).

144. Id. at 821. Courts should accord more weight to the Borland decision, albeit on Judge

Boudin’s rationale, in the aftermath of the Supreme Court’s Google decision, which strongly

endorsed the view that copyright’s purposes are best served by allowing developers of computer

programs to take advantage of having learned specific command terms and building programs with

them. Google LLC v. Oracle Am., Inc., 141 S. Ct. 1183, 1203–04 (2021).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 25

take advantage of a new advance, and to reward Borland for making a better

product.”145 He agreed with the majority that Borland should prevail but was

agnostic about whether holding the command hierarchy uncopyrightable was

a better approach than articulating a privilege akin to fair use.146

In its amicus curiae brief to the First Circuit in support of Borland’s

appeal, the American Committee for Interoperable Systems (ACIS), of which

Sun Microsystems was a founding member, noted the dual role of the Lotus

1-2-3 command hierarchy, serving both as a user interface through which

users could interact with the program to invoke specific functions and as a

program-to-program interface when enabling the execution of user-created

macros.147 ACIS pointed out that Lotus 1-2-3 users had spent considerable

time and resources constructing libraries of macros in Lotus 1-2-3. It argued

that Borland should be able to translate those macros to enable users to port

the macros to its alternative platform.148 ACIS characterized the set of rules

or commands that enables two programs to exchange information and

interoperate effectively—that is, its interface—as an unprotectable system or

method of operation under § 102(b).149 Allowing second comers to

reimplement interfaces to enable compatibility free from copyright liability

fosters competition and ongoing innovation in a manner consistent with

copyright law’s constitutional purposes.150 We think ACIS offered the more

persuasive rationale for ruling in Borland’s favor.151

D. Summary: Different Roads to the Same Destination

Between 1992 and 2014, appellate courts had reached a strong

consensus that achieving program compatibility was desirable and that

copyright did not give programmers the ability to prevent others from reusing

parts of another’s program when necessary to enable compatibility.152 There

145. Borland, 49 F.3d at 821 (Boudin, J., concurring).

146. Id. at 821–22.

147. ACIS-CCIA Borland Amicus, supra note 130, at 2.

148. Id. at 6.

149. Id. at 11. See also Taylor Instrument Cos. v. Fawley-Brost Co., 139 F.2d 98, 99–100 (7th

Cir. 1943) (rejecting Taylor’s claim of copyright aimed at stopping a competitor from making

temperature recording charts that were compatible with Taylor’s recording devices under Baker v.

Selden, 101 U.S. 99 (1879)); Brown Instrument Co. v. Warner, 161 F.2d 910, 911 (D.C. Cir. 1947)

(upholding Register’s refusal to register Brown’s recording charts, relying on Baker and Taylor).

150. ACIS-CCIA Borland Amicus, supra note 130, at 14–15.

151. The focus on the system and method of operation language in § 102(b) has been picked up

in other cases outside the software context involving technical drawings. See, e.g., RJ Control

Consultants, Inc. v. Multiject, LLC, 981 F.3d 446, 454–55 (6th Cir. 2020) (copying of a copyrighted

work held permissible where “the drawings were copied to reproduce the control system contained

therein” (emphasis in original)).

152. See, e.g., Lemley, supra note 82, at 12–17 (discussing the convergence by federal courts

on the Altai filtration approach between 1992 and 1994); Pamela Samuelson & Suzanne Scotchmer,

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

26 Texas Law Review [Vol. 100:1

was less agreement on the legal doctrine that compelled this result; courts

variously relied on the Altai AFC test, the scenes a faire doctrine, the merger

doctrine, § 102(b)’s exclusion for systems and methods of operation, and the

fair use doctrine. We agree with the Ninth Circuit in Accolade and with the

ACIS brief in Borland that the § 102(b) exclusion of procedures, systems,

and methods is the most persuasive basis for excluding program interfaces

that facilitate compatibility from the scope of copyright protection for

computer programs,153 although merger may be the most appropriate doctrine

in cases such as Lexmark where exact copying of code, not just

reimplementation of an interface, is at stake.

Regardless of which doctrinal hook courts decided to invoke, none had

held that copyright law gave owners the power to prevent others from

independently creating a compatible program. This does not mean computer

programs get no copyright protection; they do. But that protection does not

extend to APIs and other components necessary for compatibility.

Reinforcing the judicial consensus on this point, Congress endorsed

program interoperability as part of the Digital Millennium Copyright Act in

1998.154 While that Act made it illegal to circumvent a technical protection

measure that controlled access to a copyrighted work, Congress was careful

not to prohibit circumvention “for the sole purpose of identifying and

analyzing those elements of the program that are necessary to achieve

interoperability of an independently created computer program with other

programs.”155 Only the Third Circuit remained an outlier, bound by its

Whelan and Franklin precedents and unwilling to accept interoperability as

a justification for copying or a limitation on copyright.156 And there the law

stayed until 2014, when the Federal Circuit first took up Oracle III.

The Law and Economics of Reverse Engineering, 111 YALE L.J. 1575, 1621–26 (2002) (examining

the welfare effects of reverse engineering to achieve interoperability).

153. Systems and the rules for implementing them have long been held unprotectable by

copyright law. See, e.g., Pamela Samuelson, Why Copyright Law Excludes Systems and Processes

from the Scope of Its Protection, 85 TEXAS L. REV. 1921, 1928–44 (2007) (discussing the system

exception after Baker). See also Pamela Samuelson & Catherine Crump, Why 72 Intellectual

Property Scholars Support Google’s Copyrightability Analysis in the Oracle Case, 36 BERKELEY

TECH. L.J. (forthcoming 2021), https://lawcat.berkeley.edu/record/1202388?ln=en [https://

perma.cc/GN97-Z9KM] (explaining why program interfaces should be unprotectable by copyright

law under Baker and § 102(b)).

154. Digital Millennium Copyright Act, Pub. L. No. 105-304, 112 Stat. 2860, 2866–67 (1998).

155. 17 U.S.C. § 1201(f)(1). Similar language also appears in the European Software Directive.

Directive 2009/24/EC, of the European Parliament and of Council of 23 April 2009 on the Legal

Protection of Computer Programs, paras. 10–11, 15, art. 1(2), 2009 O.J. (L 111) 16, 17–18.

156. See Dun & Bradstreet Software Servs., Inc. v. Grace Consulting, Inc., 307 F.3d 197 (3d

Cir. 2002) (rejecting defendant’s interoperability arguments). The facts of that case were decidedly

less favorable to the claim of compatibility; the defendant used the plaintiff’s code under license

and apparently did some outright copying of plaintiff’s code and misappropriation of trade secrets

in an effort to divert plaintiff’s customers while nominally working with the plaintiff. Id. at 219.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 27

II. The Long Saga of Google v. Oracle

The Federal Circuit starkly deviated from two decades of consensus

decisions when ruling that Java API declarations at issue in Oracle III were

copyrightable. While the Supreme Court’s Google decision reversed the

Federal Circuit on other grounds, and therefore did not reach that question,

we perceive in the Court’s opinion support for our conviction that the

consensus view, not the Federal Circuit’s detour, is the right approach.

Subpart A summarizes the district court and Federal Circuit decisions.

Subpart B discusses Google’s fate before the Supreme Court. Subpart C

considers numerous statements in the Supreme Court’s Google decision

about the Java API and declarations that cast doubt on their copyrightability,

which resonate with Google’s merger and § 102(b) arguments. There are,

moreover, significant similarities in the Google opinion’s characterizations

of programs and implications of these characterizations for copyright scope

as appear in the pro-compatibility cases. Subpart D speculates about why the

Court had so little to say about the role of software interfaces in enabling

compatibility as compared with the uncopyrightability decisions discussed in

Part I.

A. The District Court Got It Right, but the Federal Circuit Reversed

Course

In the 1990s, Sun Microsystems developed the Java Programming

Language as an interoperable programming environment in which

programmers could “Write Once, Run Anywhere.” Sun made most of its Java

implementations available without charge, enabling Java to become a de

facto standard.157 Millions of software developers learned the Java language,

as well as many of the standardized Java Application Programming Interface

(API) packages, and used them to write applications for desktop and laptop

computers and other devices.

Google adopted the widely known Java programming language when it

designed its open smartphone platform for Android. It used thirty-seven of

the 166 Java SE API packages to enable programmers familiar with Java to

more easily develop Android apps. Google decided not to adopt Java API

declarations from the other 129 packages because they were tailored for

desktops and laptops and were not appropriate for the innovative smartphone

platform that Android would become.

But the Third Circuit’s rejection of the consensus approach was not expressly limited to those facts.

See id. at 216 (dismissing industry practice and custom as justifications for the copying).

157. For a discussion of Java’s de facto openness, see generally Mark A. Lemley & David

McGowan, Could Java Change Everything? The Competitive Propriety of a Proprietary Standard,

43 ANTITRUST BULL. 715 (1998).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

28 Texas Law Review [Vol. 100:1

Google initially sought to obtain a compatibility license from Sun to use

the thirty-seven API packages. But Sun insisted that Google implement all

166 API packages.158 Google declined because it believed that handset

makers would want a more permissive license in order to innovate new

features, and the Android team concluded that including all of the API

packages—many of which would have no applicability to smartphones—

would undermine the speed, battery usage, and storage capacity of

smartphones.159

Instead, Google wrote its own code to implement the thirty-seven

selected API packages. It developed millions of lines of new code for the

Android operating system—the implementation of the Java API and its own

code to support new APIs relating to GPS, camera functions, user

preferences, and other smartphone features. To enable programmers familiar

with Java to work easily with the Android platform, Google copied roughly

11,500 lines from the Java SE program containing “declarations”—program

elements necessary to achieve interoperability with the thirty-seven Java API

packages and the titles Sun had given those calls.160 The copied material

constituted only 0.4% of the Java SE, and a far smaller fraction of Android.

After Oracle Corporation acquired Sun Microsystems in 2010, Oracle

sued Google alleging infringement of the Java API.161 At the trial court level,

“Oracle’s central claim . . . was that Google had replicated the structure,

sequence and organization of the overall code for the 37 API packages.”162

Oracle claimed that Google had wrongfully copied the SSO of the Java API,

that is, the structure embodied in the java.package.Class.method() hierarchy.

Relying on the judicial consensus that program interfaces that facilitate

compatibility are unprotectable by copyright law, Google moved for

summary judgment arguing that its reimplementation of parts of the Java API

was not copyright infringement as a matter of law. Google invoked the scenes

a faire, merger, § 102(b) method exclusion, and fair use doctrines as the basis

for its motion.163 The district court in Oracle I, like the Eleventh Circuit in

Bateman, was unpersuaded by Google’s per se uncopyrightability theory, and

158. See Peter S. Menell, Rise of the API Copyright Dead?: An Updated Epitaph for Copyright

Protection of Network and Functional Features of Computer Software, 31 HARV. J.L. & TECH. 305,

364 & n.314 (2018) (describing Sun’s opposition to the “forking” of its program that would result

from Google licensing only thirty-seven of the 166 API packages).

159. Id. at 366 & n.322.

160. Id. at 405–06.

161. Oracle I, 810 F. Supp. 2d 1002, 1005 (N.D. Cal. 2011). Oracle’s complaint included some

patent claims, which is why Oracle’s appeals went to the Federal Circuit.

162. Oracle II, 872 F. Supp. 2d 974, 975 (N.D. Cal. 2012). Thus, Oracle tried it as a nonliteral

infringement case. Id.

163. Oracle I, 810 F. Supp. 2d at 1009–13.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 29

so denied this motion.164 Judge Alsup wanted to know more about the role of

the interface elements at issue before assessing Oracle’s copyright claim and

Google’s defenses.

Yet after a full trial and an extensive review of the software copyright

case law, Judge Alsup concluded that the Java API elements that Google

reimplemented in the Android platform were unprotectable methods or

systems within the § 102(b) exclusions or unprotectable under the merger

doctrine.165 The fact that Sun and Oracle had both sought and obtained

patents on some program interface designs reinforced his view that interfaces

were more patent than copyright subject matter.166

Judge Alsup also took note that millions of lines of code had been

written with the declarations from the thirty-seven Java API packages that

“necessarily used the command structure of names at issue.”167 The owners

of this code were the programmers who called upon these declarations, not

Oracle. “In order for at least some of this code to run on Android, Google

was required to provide the same java.package.Class.method() command

system using the same names with the same ‘taxonomy’ and with the same

functional specifications.”168 Google had taken “what was necessary to

achieve a degree of interoperability—but no more, taking care . . . to provide

its own implementations.”169 Judge Alsup considered this ruling to be

consistent with Ninth Circuit precedents that had characterized the functional

requirements for achieving compatibility with other programs to be

unprotectable procedures under § 102(b).170

Given the appellate precedents from the First, Second, Sixth, Ninth,

Tenth, and Eleventh Circuits characterizing program interfaces as

uncopyrightable under the scenes a faire, merger, and § 102(b) doctrines, as

well as fair use, it was somewhat surprising that the Federal Circuit

overturned the trial court’s ruling that the Java declarations were

164. Id. However, the court was persuaded that the names of the API functions were

unprotectable. Id. at 1009–10.

165. Oracle II, 872 F. Supp. 2d at 997–1000. Judge Alsup’s reliance on both grounds is

consistent with other decisions that have invoked both § 102(b) method exclusions and the merger

doctrine. See, e.g., Hutchins v. Zoll Med. Corp., 492 F.3d 1377, 1383–85 (Fed. Cir. 2007) (analyzing

the copyrightability of the process of cardiopulmonary resuscitation and standard instructions for

performing that process under § 102(b) and merger); MiTek Holdings, Inc. v. Arce Eng’g Co., Inc.,

89 F.3d 1548, 1556 n.19, 1557 n.20 (11th Cir. 1996) (analyzing copyright claim in a command tree

structure under § 102(b) and merger).

166. Oracle II, 872 F. Supp. 2d at 996.

167. Id. at 1000.

168. Id. (emphasis omitted).

169. Id.

170. Id.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

30 Texas Law Review [Vol. 100:1

unprotectable by copyright law.171 Like the Third Circuit in Franklin and

Whelan, it regarded § 102(b) as merely a restatement of the idea/expression

distinction.172 On appeal, Oracle argued that Google had literally copied

11,500 lines of “declaring code,” as well as the SSO of the Java packages.173

This made the court perceive the Oracle III case as similar to the Franklin

case, in that both involved literal copying of program code, and as similar to

Whelan in that both involved nonliteral copying of program SSO.174 The

Federal Circuit regarded both the “declaring code” and the “SSO” as

copyrightable as long as they were “original” within the meaning of § 102(a),

as even Google admitted they were.175

Oracle also persuaded the Federal Circuit that Google’s merger defense

lacked merit because of the large number of choices that Sun/Oracle

developers had when deciding how to structure and name the Java

declarations.176 The merger doctrine, in that court’s view, was applicable only

if the plaintiff had no alternative choices in structuring and naming the

171. Oracle III, 750 F.3d 1339, 1354 (Fed. Cir. 2014). It is worth noting that Sun Microsystems,

the firm that developed the Java API, was an influential proponent of the legal position that program

interfaces were and should be unprotectable by copyright law. Sun was a founding member of the

ACIS that filed amicus curiae briefs in numerous high profile software copyright cases arguing,

among other things, that program interfaces should be considered unprotectable under the merger

and scenes a faire doctrines or the method exclusion embodied in § 102(b). A collection of the ACIS

briefs in a series of software copyright compatibility cases can be found at COMPUT. & COMMC’NS

INDUS. ASS’N, https://www.ccianet.org/interop/ [https://perma.cc/F4ZH-9FWY]. In one of these

briefs, ACIS urged the Supreme Court to rule that program copyrights should not extend to APIs

that enable the creation of interoperable programs:

If the developer of one part of the environment can use copyright law to prevent other

developers from writing programs that conform to the system of rules governing

interaction with the environment—interface specifications, in computer parlance—the

first developer could gain a patent-like monopoly over the system without ever

subjecting it to the rigorous scrutiny of a patent examination.

ACIS-CCIA Borland Amicus, supra note 130, at 4–5 (Oracle was a member of ACIS at the time.).

 Things have changed, as one of us worried they might. See Lemley & McGowan, supra note

157, at 751 (expressing concern regarding the implications of Sun obtaining IP rights in Java).

Oracle’s attempt to prevent interoperability in the Google case is “particularly ironic because Java

was itself developed as a way of creating interoperability across platforms.” Joseph Gratz & Mark

A. Lemley, Platforms and Interoperability in Oracle v. Google, 31 HARV. J.L. & TECH. 603, 604–

05 (2018). Since Sun did not release Java on an open-source basis, Lemley & McGowan worried

that Sun would try to close the standard to others “to reap the benefits of widespread adoption.” Id.

at 604 n.6, 605 (citing Lemley & McGowan, supra note 157). And indeed, that is exactly what

happened after Oracle bought Sun’s assets. Id. at 605.

172. Oracle III, 750 F.3d at 1354–55.

173. Because Oracle had litigated its case against Google at the trial court level as a nonliteral

copyright infringement case, Google tried to persuade the Federal Circuit that Oracle had waived

the opportunity to raise literal infringement claims on appeal. The Federal Circuit did not find that

argument persuasive. Id. at 1359.

174. Id. at 1356.

175. Id. at 1356–57, 1367.

176. Id. at 1359–62.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 31

element allegedly infringed.177 The Federal Circuit also rejected Google’s

scenes a faire argument in part because it concluded Google had not

developed an adequate factual record on which this defense could be based

and in part because scenes a faire, like merger, in that court’s view, must be

judged from the plaintiff’s standpoint. If the names and structure of the Java

API declarations were not commonplace at the time that Sun/Oracle

developed them, the Federal Circuit concluded they could not be

unprotectable under the scenes a faire doctrine.178

The Federal Circuit treated Google’s interoperability arguments in a

separate section of the opinion. It rejected these arguments as well, invoking

the Franklin decision’s dicta for the proposition that interoperability

considerations are irrelevant to copyrightability.179 The court also found

Google’s compatibility defense to be disingenuous as it had designed

Android to be incompatible with Java platforms (that is, because Google did

not use all 166 Java API packages in Android, many apps developed for the

Android platform could not be executed on Java-compliant platforms and

vice versa).180 The court thought that compatibility considerations might be

relevant to a fair use defense, but not to copyrightability.181 Google relied on

Accolade and Connectix in support of its argument that Ninth Circuit law

precluded copyright protection for interfaces, but the Federal Circuit

interpreted them as fair use cases only.182

Although the Federal Circuit was skeptical that Google could prevail on

its fair use defense, it concluded that triable issues of fact precluded granting

judgment to Oracle as a matter of law.183 It remanded the case to the district

court so the court could conduct a jury trial on fair use. After the jury rendered

a verdict in favor of Google’s fair use defense, Oracle sought to overturn this

verdict, arguing that no reasonable jury could have decided Google’s copying

of the Java declarations was fair use. The district court rejected Oracle’s

argument in an opinion that articulated numerous fact issues on which

177. Id. at 1361. The court ignored that Sega’s and Sony’s interfaces constrained the design

choices of Accolade and Connectix, a fact that was central to the Ninth Circuit rulings. See supra

text accompanying notes 85–99. See also Samuelson, supra note 14, at 442–46 (discussing how the

merger of idea and expression constrains design choices).

178. Oracle III, 750 F.3d at 1363–64. This conception of the scenes a faire doctrine is

inconsistent with the Altai and Lexmark decisions.

179. Id. at 1368–72. The Federal Circuit cited approvingly to Dun & Bradstreet Software Servs.,

Inc. v. Grace Consulting, Inc., 307 F.3d 197, 215 (3d Cir. 2002), for the proposition that only

constraints on the plaintiff’s choices are pertinent limits on copyrightability in its discussion of

Google’s interoperability defense. Oracle III, 750 F.3d at 1370.

180. Oracle III, 750 F.3d at 1371.

181. Id. at 1372. That promise proved illusory, however. In its later reversal of a jury’s finding

of fair use, the Federal Circuit said that compatibility had no bearing on the case. Oracle V, 886

F.3d 1179, 1206 n.11 (Fed. Cir. 2018).

182. Oracle III, 750 F.3d 1365–69.

183. Id. at 1373–77.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

32 Texas Law Review [Vol. 100:1

Google and Oracle had offered conflicting evidence, concluding that the jury

must have been persuaded by Google’s evidence over Oracle’s.184

But on appeal to the Federal Circuit, Oracle once again prevailed. The

Federal Circuit cited Supreme Court case law holding that fair use is a mixed

question of law and fact.185 It concluded that legal questions predominate in

fair use cases, so it treated the jury’s verdict as advisory except as to two

“historical facts.”186 The fair use factors that it thought most strongly

disfavored the jury’s verdict were the first and the fourth: Google’s use was

commercial and nontransformative and this taking had harmed Oracle as to

both actual and potential markets.187 While characterizing the amount taken

as qualitatively substantial, the court decided that this factor was at best

neutral.188 Although persuaded that the nature-of-the-work factor favored

Google, the Federal Circuit concluded that Oracle was right that Google’s

copying was an unfair and infringing use of the Java API as a matter of law.189

B. The Supreme Court Weighs In

Google sought certiorari on both the copyrightability of APIs and fair

use issues. Several software-industry amicus curiae briefs supported this

petition, all but one of which urged the Court to grant the petition on the

copyrightability issue.190 Many amicus briefs argued that the Federal

Circuit’s Oracle III decision had upset settled expectations that software

developers had had for decades that program interfaces were unprotectable

184. Oracle IV, No. C 10-03561 WHA, 2016 WL 5393938, at *15 (N.D. Cal. Sept. 27, 2016).

185. Oracle V, 886 F.3d at 1192–93 (citing Harper & Row, Publishers, Inc. v. Nation Enters.,

471 U.S. 539, 560 (1985)).

186. Id. at 1193–96. It deferred to the jury verdict in respect of Oracle’s claim that Google acted

in bad faith and in respect of functional considerations affecting the nature of the work factor. Id. at

1202–05.

187. Id. at 1210. Factor 1 was discussed id. at 1196–1204, and Factor 4 was discussed id. at

1207–10.

188. Id. at 1205–07.

189. Id. at 1210. The court discussed the nature-of-the-work factor. Id. at 1204–05. However,

the court thought this factor should have little significance in software cases; to do otherwise would

negate Congress’s intent to provide copyright protection to programs. Id. at 1205.

190. See, e.g., Amicus Curiae Brief of Devs. All. in Support of Petitioner, Google LLC v. Oracle

Am., Inc., 141 S. Ct. 1183 (2021) (No. 18-956), 2019 WL 913607 [hereinafter Developers Alliance

Amicus Brief I] (asking the Court to grant Google’s petition to provide much-needed clarity and

resolve conflicting approaches of the lower courts); Brief of Amici Curiae Mozilla Corp. et al. in

Support of Petitioner, Google, 141 S. Ct. 1183 (No. 18-956) [hereinafter Mozilla Amici Brief]

(same); Brief of Amicus Curiae Red Hat, Inc. in Support of Petitioner, Google, 141 S. Ct. 1183 (No.

18-956) [hereinafter Red Hat Amicus Brief] (same). See also Brief of Microsoft Corp. as Amicus

Curiae in Support of Petitioner, Google, 141 S. Ct. 1183 (No. 18-956), 2019 WL 932014 [hereinafter

Microsoft Amicus Brief] (addressing only the fair use ruling).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 33

by copyright law.191 They relied upon Baker v. Selden and some of the

software-interface cases for support of the proposition that interfaces were

and should be uncopyrightable.192 The briefs explained the importance of

interoperability in today’s interconnected world and for the existence of the

open-source software industry.193

The Court granted certiorari on both issues.194 Google’s opening brief’s

discussion of the copyrightability issue focused more on the merger doctrine

than the § 102(b) exclusion challenge.195 Several amicus briefs filed in

support of Google’s appeal, most notably one filed by IBM Corp., focused

only on the copyrightability issue.196 While the amicus briefs filed in support

of Oracle’s defense of the Federal Circuit’s rulings outnumbered those filed

in support of Google’s challenge,197 Google had stronger software industry

support than Oracle.198 Some software industry briefs expressed concern

about the harmful effects on competition and ongoing innovation in the

191. See, e.g., Mozilla Amici Brief, supra note 190, at 3 (asserting that in the context of APIs,

the Oracle III decision “upended decades of industry practice and the well-established expectations

of [software] developers”); Red Hat Amicus Brief, supra note 190, at 18 (arguing that Oracle III

disrupts “a decades-long understanding and expectation that programming interfaces are available

for everyone to use in creating new products and services”).

192. See, e.g., Mozilla Amici Brief, supra note 190, at 3 (discussing how the software industry

had flourished thanks to the lack of copyright protection for interfaces brought about by Baker and

§ 102(b)); Red Hat Amicus Brief, supra note 190, at 15–18 (describing how the judicial consensus

that interfaces are not copyrightable emerged from Baker and the Computer Associates and Borland

cases).

193. See, e.g., Microsoft Amicus Brief, supra note 190, at 3–12 (highlighting the benefits of

open source software and interoperability on innovation); Red Hat Amicus Brief, supra note 190,

at 4 (explaining that the extension of copyright protection to interfaces would create significant

barriers to innovation).

194. Google, 141 S. Ct. at 1195.

195. Brief for the Petitioner, supra note 5, at 21–34 (discussing merger); cf. id. at 17–18

(discussing § 102(b) exclusions). Google’s brief devoted close to equal time to the fair use issue.

Id. at 34–50.

196. See Brief for Int’l Bus. Mach. Corp. & Red Hat, Inc. as Amici Curiae Supporting

Petitioner, Google, 141 S. Ct. 1183 (No. 18-956) [hereinafter IBM Amici Brief] (arguing that

interfaces are excluded from copyright under 17 U.S.C. § 102(b)); Amicus Curiae Brief of Devs.

All. in Support of Petitioner, Google, 141 S. Ct. 1183 (No. 18-956), 2020 WL 224319 [hereinafter

Developers Alliance Amicus Brief II] (same); Brief of Amicus Curiae Engine Advoc. in Support of

Petitioner, Google, 141 S. Ct. 1183 (No. 18-956), 2020 WL 242504 [hereinafter Engine Advocacy

Amicus Brief] (same).

197. Thirty-one amicus briefs supported Oracle, nine of which were filed on behalf of non-

software copyright industry groups (e.g., the Motion Picture Association) or individuals (e.g.,

former Register of Copyrights Ralph Oman). Twenty-seven amicus briefs supported Google. Two

amicus briefs were filed in support of neither party.

198. Google-side amici included IBM Corp., Microsoft Corp., and the App Developers

Alliance. The most prominent of Oracle-side software industry amici were Dolby Labs., Inc. and

SAS Institute, Inc., the latter of which as we note below has a similar case to Oracle’s pending.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

34 Texas Law Review [Vol. 100:1

software industry if the Court did not decide that program interfaces were

unprotectable by copyright law.199

The Supreme Court reversed the Federal Circuit’s holding that Google

was liable for copyright infringement, albeit on the fair use ruling instead of

the copyrightability ruling.200 Although this Article’s primary focus is on the

copyrightability issue, and although its authors would have preferred for the

Court to have ruled that program interfaces that enable compatibility are

unprotectable by copyright law, the Court’s ruling that Google’s

reimplementation of the Java API declarations was fair use as a matter of law

was a major victory not only for Google, but for the many programmers and

developers who supported Google’s appeal.

The Court agreed with the Federal Circuit that the nature-of-the-work

factor favored Google’s fair use defense but regarded that factor as much

more significant than had the Federal Circuit.201 The Court noted that the

declarations and implementing code “call for, and reflect, different kinds of

capabilities” and embody “different kind[s] of creativity.” It concluded that

the declarations were farther from the core of copyright than the

implementing code, so there was less reason to be concerned about the risk

of undermining incentives to create software.202 The Court took into account

that Sun had wanted programmers to learn Java and that a great deal of the

value of the declarations lay in investments that programmers had made in

learning and building programs using the declarations.203

The Court regarded Google’s use of the declarations as “transformative”

because this use contributed to the creation of an innovative smartphone

platform and further enabled programmers to be highly creative in

developing apps to run on that platform.204 Although acknowledging that

199. See, e.g., Developers Alliance Amicus Brief II, supra note 196, at 18–20 (“If . . . the use

and implementation of API declarations are subject to individual control, then these interfaces

become a choke point for monopoly control.”).

200. Google, 141 S. Ct. at 1190.

201. Id. at 1201–02. To signal how important it regarded the nature-of-the-work factor, the

Court addressed it first. See id. (explaining that the Court viewed the declaring code at issue as

“further than . . . most computer programs . . . from the core of copyright” and as such the Court

was less concerned than the Federal Circuit that a finding of fair use would undermine general

copyright protection for computer programs).

202. Id. at 1202.

203. Id. Scholars have previously noted the nature-of-the-work factor rarely affected the

outcome of cases. See Joseph P. Liu, Two-Factor Fair Use?, 31 COLUM. J.L. & ARTS 571, 572

(2008) (discussing how courts have expressly deemphasized the nature-of-the-work factor); Clark

D. Asay, Arielle Sloan & Dean Sobczak, Is Transformative Use Eating the World?, 61 B.C. L. REV.

905, 960–61 (2020) (discussing how the nature-of-the-work factor carries little weight in the fair

use analysis). For a pre-Google argument to reinvigorate that factor, see Samuelson & Asay, supra

note 16, at 561.

204. Google, 141 S. Ct. at 1203–04. Although the Court regarded Google’s use as commercial,

this was “not dispositive . . . in light of the inherently transformative role that the reimplementation

played in the new Android system.” Id. at 1204.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 35

Google’s use of 11,500 declarations might seem a substantial amount, the

percentage of the Java API Google used was relatively small.205 In addition,

the Court concluded that the use was reasonable in light of Google’s purpose

in allowing programmers experienced with them to build new programs for

Android.206

The Court strongly disagreed with the Federal Circuit on the harm-to-

the-market factor.207 The Court largely deferred to the jury’s verdict, noting

that it had heard evidence about Oracle’s claims of harm and must not have

been persuaded by either its actual or potential market harm claims.208

Moreover, the Court thought that enforcing Oracle’s copyright claim would

interfere with, rather than foster, fulfillment of the constitutional purpose of

copyright.209 The Court concluded that Google’s reimplementation of the

Java declarations was fair use as a matter of law.210

C. Some Parts of the Google Decision Cast Doubts on the

Copyrightability of Interfaces

While the Google decision stated that the Court “assume[d], but purely

for argument’s sake,” that the Java API declarations were copyrightable,211

nowhere did the Court express support for Oracle III or any of the Federal

205. Id. at 1204–05.

206. Id. at 1205–06.

207. Id. at 1206–08.

208. Id. at 1206–07. The Court agreed with the Federal Circuit and Oracle that fair use is more

a legal than a factual issue. Id. at 1199–1200. However, unlike the Federal Circuit, the Court

regarded whether a challenged use had caused market harm to be a factual issue for the jury. Id. at

1200.

209. Id. at 1208.

210. Id. at 1209 (“[W]here Google reimplemented a user interface, taking only what was needed

to allow users to put their accrued talents to work in a new and transformative program, Google’s

copying of the Sun Java API was a fair use of that material as a matter of law.”).

211. Id. at 1197. The Court proffered this reason for not reaching the copyrightability ruling:

“Given the rapidly changing technological, economic, and business-related circumstances, we

believe that we should not answer more than is necessary to resolve the parties’ dispute.” Id. We

question the strength of this rationale given the overwhelming software industry support for

overturning the Federal Circuit’s copyrightability ruling. See, e.g., IBM Amici Brief, supra note

196, at 31 (urging the Court to reverse the Federal Circuit’s copyrightability ruling); Developers

Alliance Amicus Brief II, supra note 196, at 31 (same); Brief of Amici Curiae the Comput. &

Commc’n Indus. Ass’n & Internet Ass’n in Support of Petitioner at 31, Google, 141 S. Ct. 1183

(No. 18-956), 2020 WL 224320 [hereinafter CCIA Amici Brief] (same). Moreover, the Court had

denied certiorari on Google’s first petition back in 2015 based in part on the Solicitor General’s

recommendation that the Court wait until the case was over so it could address all the issues

together. See U.S. Amicus Brief, supra note 137, at 22 (suggesting that “[a]t a minimum, this Court

could better assess and clarify the relevance of those concerns to copyright-law analysis if the Court

had before it all potentially relevant statutory arguments”).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

36 Texas Law Review [Vol. 100:1

Circuit’s doctrinal analyses of the copyrightability issue.212 Only the two

dissenters reached that issue, and they would have held the Java declarations

copyrightable.213

While the Court did not reach the copyrightability issue in Google,

finding fair use a sufficient ground for its decision, there is much in the

Court’s analysis and reasoning that supports the pre-Federal Circuit

consensus that APIs are uncopyrightable.

The Supreme Court’s Google decision came closest to saying that the

Java API declarations were uncopyrightable when describing the relationship

among three key elements: method calls, with which programmers identify

tasks they want to have performed (and in which Oracle did not claim

copyright); implementing code, which actually carries out the appropriate

tasks (which is copyrightable but which Google did not copy); and

declarations which provide the link (that is, interface) between the method

calls and implementing code.214 The Court stated that the declarations are

“inextricably bound up with” method calls as well as with implementing

code.215 The Court used the phrase “inextricably bound up” four times in one

paragraph in describing the relationship between the Java declarations and

method calls, implementing code, the division of computing tasks, and the

organization of tasks into “what we have called cabinets, drawers, and

212. The only citations to Oracle III were in the section that explained what an API is and in

the section reviewing the case history. Google, 141 S. Ct. at 1191, 1194–95. However, there was

one respect in which the Court’s language was similar to the Federal Circuit’s copyrightability

decision: in its acceptance of the term “declaring code,” Oracle III, 750 F.3d 1339, 1349 (Fed. Cir.

2014), instead of “declarations,” the term used by the district court and computer scientists.

Oracle II, 872 F.2d 974, 979 (N.D. Cal. 2012); Brief Amici Curiae of 83 Computer Scientists in

Support of Petitioner at 3, Google, 141 S. Ct. 1183 (No. 18-956) [hereinafter 83 Computer Scientists

Amici Brief]. It is worth noting that Google acceded to the term declaring code in its Supreme Court

briefings. Brief for the Petitioner, supra note 5, at 39.

213. Justice Thomas’s dissent agreed with Oracle that APIs were copyrightable, Google, 141 S.

Ct. at 1211, but his opinion garnered only two votes. Yet it was not just Justices Thomas and Alito

who were unsure about how to distinguish declarations and implementing code as a copyrightability

matter given that both fell within the definition of computer program in 17 U.S.C. § 101. See

Transcript of Oral Argument at 14–15, Google, 141 S. Ct. 1183 (No. 18-956) (Breyer, J. asking

Mr. Goldstein to distinguish between them). The dissent takes the (incorrect) position that

“declaring code” must be understood to fall within the statutory definition of computer program in

the copyright statute, 17 U.S.C. § 101, just as does implementing code, from which it concludes that

if software is entitled to some statutory protection, then copyright must extend to the functional

aspects of software. Google, 141 S. Ct. at 1212–13 (Thomas, J., dissenting). It views this as

sufficient to eliminate both the methods of operation and merger doctrines. Id. at 1213–14. The

dissent’s approach finds no support in the statute or in any prior case law. Even those cases that

found copyright infringement in software would not read the copyright statute as broadly as the

dissent does. Further, the dissent makes no reference to the fact that the code in question related to

APIs, and draws no distinction at all between APIs and other forms of code. For criticism of the

dissent’s approach to copyrightability, see JONATHAN BAND, INTERFACES ON TRIAL 3.0: GOOGLE

V. ORACLE AMERICA AND BEYOND 126–27 (2021).

214. Google, 141 S. Ct. at 1201.

215. Id.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 37

files.”216 Of these four elements with which declarations are linked, the Court

said only implementing code was copyrightable.217 Use of the declarations,

moreover, is “inherently bound together with uncopyrightable ideas (general

task division and organization) and new creative expression (Android’s

implementing code).”218 These statements were supportive of Google’s

merger arguments under which expression that is “inextricably bound up

with” ideas or function is not copyrightable.219

There is also good reason to think that the majority approached the Java

API as an uncopyrightable system or method of operation. The Court spoke

of the Java API’s overall organization as a “system” and of the declarations

as part of a “task calling system.”220 The Court repeatedly expressed concern

about programmers having to learn a new “system” to call up the same tasks

instead of being able to use that with which they were already familiar.221 The

Court characterized declarations as “inextricably bound together with a

general system, the division of computing tasks, that no one claims is a proper

subject of copyright.”222 Google copied the declarations “not because of their

creativity, their beauty, or even (in a sense) because of their purpose,” but

“because programmers had already learned to work with the Sun Java API’s

system.”223 Each of these statements echoes the First Circuit’s treatment of

the same issues in its Borland decision.224 These statements provide some

support for Google’s § 102(b) system arguments.225

Further, all of the non-computer analogies the Court used to explain the

Java API were to things copyright doesn’t protect. The Google decision

likened the Java API declaration structure to file cabinets, drawers, and files

and more generally analogized the declarations to the Dewey Decimal

216. Id.

217. Id.

218. Id. at 1202. See also id. at 1205 (“[T]he Sun Java API is inseparably bound to those task-

implementing lines,” for “[i]ts purpose is to call them up.”).

219. See discussion of Lexmark supra notes 108–122. See also Samuelson, supra note 66, at

1267–84 (discussing the origins, role, and function of the merger doctrine in software cases). The

word “merger” appears only once in the Google opinions, when noting that Google had invoked

this doctrine as a defense. Google, 141 S. Ct. at 1213 (Thomas, J., dissenting).

220. Google, 141 S. Ct at 1192–93.

221. Id. at 1193–94, 1205.

222. Id. at 1201.

223. Id. at 1205.

224. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815–19 (1st Cir. 1995).

225. Justice Breyer’s opinion mentioned 17 U.S.C. § 102(b) twice, but only in background

sections. Google, 141 S. Ct. at 1194, 1196. After quoting from the text of § 102(b), it noted that this

provision was relevant to the copyright–patent distinction. Id. at 1196. Google had made much of

that distinction in its briefs and during oral argument. See, e.g., Brief for the Petitioner, supra note

5, at 17–18, 23 (“[C]opyright protection in a work extends only to expression, not to the idea that

the expression conveys.”); Transcript of Oral Argument, supra note 213, at 3–4, 7 (arguing that

“Oracle has a copyright to the computer code in Java SE but not a patent”). This argument got no

traction with the Justices. Id. at 7.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

38 Texas Law Review [Vol. 100:1

System, gas pedals that enable cars to move faster, QWERTY keyboards,

travel-guide categories, and most strangely, human keystrokes that might

direct robots to fetch recipes and deliver them to cooks.226 Copyright law

would not extend protection to any of these intellectual creations (except for

the software in the robot). Thus, these analogies offer further support for

Google’s uncopyrightability arguments.

The Google decision also made numerous statements that resonate with

those found in appellate court decisions in which compatibility defenses

succeeded. For instance, the Court likened the Java API to the user interface

menu commands held unprotectable in Borland.227 As in Altai and Accolade,

the Court in Google characterized computer programs as functional works

that enjoy a thinner scope of copyright protection than artistic or fictional

works.228 As in Altai, the Court acknowledged that it is difficult to apply

copyright doctrines to computer programs because of their intermixture of

functionality and expressiveness.229 As in Accolade and Lexmark, the Court

perceived the need for a “context-based check that can help to keep a

copyright monopoly within its lawful bounds.”230 The Court’s warnings

about lock-in effects and risks that copyright might stifle innovation resonate

with similar concerns in the Altai, Accolade, and Borland decisions.231 The

Google decision’s emphasis on the importance of enabling programmers to

reimplement interfaces is more consistent with Altai and its progeny than

with Whelan/Oracle III.232 The Court notably cited approvingly to Borland,

Accolade, Connectix, and Lexmark, each of which had characterized program

226. Google, 141 S. Ct. at 1192–93. During oral argument, the Justices tested out several other

analogies: the headings of briefs, math class proofs, the arrangement of food items on restaurant

menu, telephone switchboards, periodic tables, and phyla of living things. Transcript of Oral

Argument, supra note 213, at 5, 27, 40–41, 47, 57.

227. Google, 141 S. Ct. at 1201.

228. Id. at 1198.

229. Id. at 1198, 1208. The Court quoted from Judge Boudin’s concurrence in Borland in

observing that “applying copyright law to computer programs is like assembling a jigsaw puzzle

whose pieces do not quite fit.” Id. at 1198 (quoting Borland, 49 F.3d at 820 (Boudin, J., concurring)).

230. Id. Indeed, the Court cited Lexmark and Accolade on this point. Id. at 1198–99.

231. Id. at 1198, 1208.

232. It is telling, however, that the Google decision cited Baker only once, and then only in

passing, as a cf. to a statement about “decisions about what counts as a task” not being

copyrightable, although “one might argue about decisions as to how to label and organize such tasks

(e.g., the decision to name a certain task ‘max’ or to place it in a class called ‘Math.’[)].” Id. at 1201.

This suggests that the Justices were unable to reach consensus on the implications of Baker for the

copyrightability of the Java API declarations. Many of the Google-side briefs, from industry amici,

public interest advocates, as well as academics, relied on the logic of Baker and its codification in

§ 102(b) in support of their arguments that the Java API declarations were uncopyrightable. See,

e.g., IBM Amici Brief, supra note 196; Engine Advocacy Amicus Brief, supra note 196; Brief of

Amicus Curiae Elec. Frontier Found. in Support of Petitioner, 141 S. Ct. 1183 (No. 18-956); Brief

of 72 Intellectual Prop. Scholars as Amici Curiae in Support of Petitioner, 141 S. Ct. 1183 (No. 18-

956). The Google decision also cited § 102(b) only in background sections of the opinion. Google,

141 S. Ct. at 1194, 1196.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 39

interfaces needed for compatibility as unprotectable by copyright law.233

Moreover, it never cited to Whelan or Franklin or embraced the protectability

of program SSO or expressed hostility to competitors’ desires to achieve

interoperability.

D. Why Did the Court Have So Little to Say About Compatibility?

The terms “compatible/compatibility” and “interoperable/

interoperability” were rarely mentioned in the Google decision.234 The term

“interface” appeared occasionally, but mostly in characterizing declarations

as providing a “user interface” between programmers and the machines on

which their programs will run.235 Yet, it is fair to interpret the Google

decision as having implicitly recognized a somewhat different kind of

interoperability than consensus cases had addressed: interoperability of

humans with software, such that programmers could continue to use

declarations that they already knew when writing apps for the Android

platform as well as for Java-compliant platforms.

The rarity of references to “compatible/compatibility” and

“interoperable/interoperability” in Google may seem surprising given how

widely invoked, indeed almost ubiquitous, those terms were in the software

industry amicus briefs filed in support of Google.236 We will turn in Part III

to what we think the Court should have said about compatibility and why,

but before doing so, it is worth considering why these terms had so little

traction with the Court in the Google case.

The most obvious explanation is that the interoperability considerations

expressed in the Google-side briefs did not mesh well with the predominant

narrative of Justice Breyer’s fair use opinion: that Google’s reimplementation

of the Java API declarations was fair use because this allowed programmers

233. Google 141 S. Ct. at 1198–99. At least three of the amicus briefs from which the Court

quoted as supporting Google’s appeal were briefs that argued that APIs should be unprotected by

copyright law. Id. at 1203–04 (first citing Brief of the R St. Inst. et al., Google, 141 S. Ct. 1183 (No.

18-956); then citing 83 Computer Scientists Amici Brief, supra note 212; and then citing Brief for

the Am. Antitrust Inst. as Amicus Curiae in Support of Petitioner, Google, 141 S. Ct. 1183 (No. 18-

856)).

234. Id. at 1190 (mentioning “interoperable” in relation to the development of Java to enable

software to run on multiple platforms), 1191 (noting that “Sun’s interoperability policy would have

undermined” Google’s business model), 1198 (mentioning “compatibility” in a parenthetical citing

to Lexmark), 1205 (referring to Google’s “Java-compatibility objective” in reusing Java

declarations). The Court obliquely noted that “[t]he jury heard that shared interfaces are necessary

for different programs to speak to each other.” Id. at 1203.

235. Id. at 1192, 1201–04, 1208–09.

236. See, e.g., Developers Alliance Amicus Brief II, supra note 196 passim (using

“interoperable/interoperability” repeatedly); Microsoft Amicus Brief, supra note 190 passim (using

“compatible/compatibility” and “interoperable/interoperability” repeatedly). See also 83 Computer

Scientists Amicus Brief, supra note 212 passim (using “compatible/compatibility” and

“interoperable/interoperability” repeatedly).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

40 Texas Law Review [Vol. 100:1

who had invested in learning the declarations to continue using them as

building blocks with which to create new programs that could run on the

creative Android smartphone platform.237

The Court’s view about Google’s motivations in reusing the

declarations contrasts sharply with the Federal Circuit’s. The Federal Circuit

viewed Google as having copied the declarations “to capitalize on the

preexisting community of programmers who were accustomed to using the

Java API packages,”238 as though by trying to attract programmers to write

for Android, Google was engaged in unfair competition with Oracle and was

free riding on Oracle’s innovations. The Supreme Court clearly rejected that

view. One reading of the Google decision is that interoperability per se didn’t

matter to the Court’s opinion; Google’s use was permissible whether or not

the programs were compatible so long as it allowed third party programmers

to continue to use programming languages they knew.

Another possible explanation for the Court’s lack of attention to

compatibility issues is that the Court may not have conceived of Google v.

Oracle as a compatibility case in the strict sense.239 Altai, Accolade, Bateman,

Lexmark, and Borland were “truer” compatibility cases because the

defendants in those cases really did need to reimplement other firms’

interfaces in order for their programs to successfully interoperate with other

programs.240 Google was not such a case.

Google can more accurately be said to be about enabling cross-platform

consistency than about program-to-program interoperability.241 The Android

software, after all, was designed to run on a very different type of computing

device—smartphones—than the laptop and desktop computers for which

Java SE was originally developed. Google did not reimplement in Android

most parts of the Java API because the 129 packages it did not reimplement

enabled functionalities for laptops and desktops that smartphones did not

237. Google, 141 S. Ct. at 1202–03 (discussing how the value of the declarations derives in

significant part from the investments programmers made in learning them and using them to create

new programs).

238. Oracle III, 750 F.3d 1339, 1372 (Fed. Cir. 2014).

239. During oral argument, Justice Sotomayor asked Google’s counsel about his definition of

interoperability. She seemed to think that his definition was one-directional. She asked if others

could copy Google’s declarations for an alternative platform. Transcript of Oral Argument, supra

note 213, at 23. Mr. Goldstein indicated that Google didn’t use all of the declarations because

smartphones are a different type of platform. Id. at 23–24.

240. During oral argument, Justice Sotomayor noted that since 1992, Altai and cases from at

least three other circuits had held that APIs were not copyrightable, thus shaping industry

expectations about the unprotectability of interfaces. Why, she asked, should the Court upset settled

expectations? Transcript of Oral Argument, supra note 213, at 52–54. Justice Kagan also mentioned

Altai as having articulated a test for separating functionality and expression in programs. Id. at 26.

241. See Ord. Denying Rule 50 Motions, Oracle IV, 2016 WL 5393938 (N.D. Cal. Sept. 27,

2016) (No. C 10-03561 WHA), 2016 WL 3181206, at *6 (“Google copied only so much declaring

code as was necessary to maintain inter-system consistency among Java users.”).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 41

need (e.g., enabling mouse functionalities).242 The thirty-seven Java API

packages that Google reimplemented were those that enabled tasks that all

types of computing devices must be able to perform (e.g., comparing two

numbers to determine which was larger). Because of the many significant

differences between smartphones and laptops/desktops as computing

platforms, Google had to develop many new declarations to enable

performance of smartphone-specific tasks.

As a result of these differences, some programs initially developed for

Java SE-compliant platforms could not be executed on the Android platform,

and some programs developed for Android would not run on Java SE-

compliant devices. Although some programs could be executed on both

Android and Java SE-compliant platforms without adaptation, many

programs first developed for one of these platforms would not work on the

other without some adaptation.

In this respect, the Google case is distinguishable from other

compatibility decisions upholding uncopyrightability defenses. This may

have been another reason why the Court chose not to discuss Altai and its

progeny and why the Court hardly ever used the terms

“compatible/compatibility” or “interoperable/interoperability” when

discussing the Google dispute. It certainly mattered to the Federal Circuit,

which dismissed all compatibility arguments out of hand on the grounds that

Android was not fully interoperable with Java.243 As we discuss in the next

Part, however, compatibility need not be perfect to be valuable.

III. APIs and the Importance of Interoperability

 The law before Google v. Oracle was clear and well-settled: software

developers could not use copyright law to prevent others from copying APIs

to achieve compatibility. The Federal Circuit’s decision departed from those

precedents in holding that Sun/Oracle’s API declarations were copyrightable.

While the Supreme Court did not find it necessary to address the 2014

decision, both the Court’s rationale and its language suggest that—had fair

use not been at issue in the case—it would follow the overwhelming

consensus of the regional circuits, not the Federal Circuit’s reinterpretation

of copyright law. Indeed, Justice Thomas’s dissent suggests that the majority

opinion is tantamount to an uncopyrightability ruling.244

242. Google, 141 S. Ct. at 1203.

243. Oracle III, 750 F.3d at 1368–71.

244. Google, 141 S. Ct. at 1214 (Thomas, J., dissenting) (“The result of this distorting analysis

is an opinion that makes it difficult to imagine any circumstance in which declaring code will remain

protected by copyright.”).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

42 Texas Law Review [Vol. 100:1

Nonetheless, and even though the Federal Circuit is supposed to defer

to the regional circuits in interpreting copyright law,245 some software

developers are likely to engage in forum shopping so that their appeals will

go to the Federal Circuit and to argue that it should follow its 2014 Oracle III

decision rather than Supreme Court or regional circuit precedent. Indeed,

they have already done so in one case pending before the Federal Circuit right

now.246

In this Part, we argue first that defendants in software copyright cases

should not have to rely only on fair use when sued for copyright infringement

based on their reimplementations of interfaces that facilitate compatibility,

and then that courts should continue to protect interoperability by denying

copyright protection to APIs. The Federal Circuit does not have authority to

establish its own copyright precedents. It is supposed to follow the law of the

regional circuits, so it should acknowledge and defer to those decisions.247

A. Why Fair Use Is Not Enough

The Court’s strong endorsement of Google’s fair use defense may deter

some software developers from bringing lawsuits to challenge firms that

reimplement their interfaces. However, reimplementers who operate in the

same or a closely proximate market as the interface’s developer may consider

Google to be distinguishable. After all, the Court made much of Android’s

being in a different market segment from Java SE when considering the

important market harm factor.248 It also remains to be seen how courts will

construe the Google decision when second comers have reimplemented other

interface elements of programs such as command structures, command titles,

and input/output formats.

There are, however, other reasons not to place full reliance on fair use.

Because it is a fact-and-case-specific, multi-factor test, it is hard to predict

245. See, e.g., Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 837 (Fed. Cir. 1992)

(“To resolve issues of copyright law, this court applies the law as interpreted by the regional

circuits.”).

246. SAS Inst., Inc. v. World Programming Ltd., 496 F. Supp. 3d 1019 (E.D. Tex. 2020)

(dismissing SAS’s copyright claim for failure to identify protectable and unprotectable elements of

its software), appeal docketed, No. 2021-1542 (Fed. Cir. Jan. 13, 2021) (Westlaw).

247. See, e.g., Oracle III, 750 F.3d at 1353 (noting that “[w]hen the questions on appeal involve

law and precedent on subjects not exclusively assigned to the Federal Circuit,” the Federal Circuit

applies the regional circuit’s law (quoting Atari Games, 897 F.2d at 1575)). Yet, the Federal Circuit

failed to acknowledge that the Ninth Circuit in Accolade and Connectix had characterized program

interfaces needed for compatibility as unprotectable procedures under 17 U.S.C. § 102(b). Id. at

1365–68. Nor did the Federal Circuit attempt to distinguish pro-compatibility cases such as Altai

and Bateman from the interface elements at issue in the Oracle III dispute. The Federal Circuit’s

interpretation of copyright law, as applied to interfaces, called into question the holdings of all of

the pro-compatibility cases. That may explain why so many key players in the software industry

supported Google’s appeal of the Federal Circuit’s copyrightability ruling.

248. Google, 141 S. Ct. at 1206–07.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 43

the outcome of fair use defenses early. Indeed, Larry Lessig once described

fair use as nothing more than “the right to hire a lawyer.”249 While the

Supreme Court’s holding that many core issues of fair use can be resolved

without the need for a jury is helpful in reducing uncertainty, fair use still

depends quite heavily on how judges view subjective issues like the

transformative nature of the work. As the Second Circuit’s remarkable

decision in Andy Warhol Foundation v. Goldsmith250 reminds us, courts can

upend even the seemingly most obvious and simple assumptions about fair

use.251 If an appellate court can conclude that there is nothing transformative

or creative about Andy Warhol’s paintings, it’s hard to predict with any

certainty how a computer program will fare.

Consider also who bears the ultimate burden of persuasion when

defendants raise uncopyrightability and fair use as grounds for questioning

copyright claims involving reuses of interfaces that facilitate compatibility.

Plaintiffs always bear the burden of proving that what the defendants copied

from their programs was copyright-protectable expression.252 Courts

generally characterize fair use as an affirmative defense on which defendants,

not plaintiffs, bear the burden of persuasion (which is a view with which we

disagree).253

Even beyond the problem of subjective judgment and proof burdens,

fair use still depends on some case-specific questions of fact, particularly

regarding market effect. The Supreme Court deferred to the jury’s implicit

finding that Oracle didn’t suffer market harm because neither it nor Sun had

a realistic prospect of entering the market for smartphone operating systems.

But that leaves open the possibility that a jury in a different case with

different facts might reach a different conclusion about market harm.

There is a particular risk that the Google fair use decision might not

extend to cases where the parties, unlike Google and Oracle, are direct

competitors. The pro-interoperability caselaw has protected companies who

249. LAWRENCE LESSIG, FREE CULTURE: THE NATURE AND FUTURE OF CREATIVITY 187

(2004).

250. 992 F.3d 99 (2d Cir. 2021), withdrawn and superseded on reh’g, No. 19-2420-cv, 2021

WL 3742835 (2d Cir. Aug. 24, 2021). The amended opinion drops some of the statements most

obviously in conflict with Google but does not change the shocking result or basic analysis.

251. See id. (reversing a trial court’s summary judgment ruling that Warhol had made a

transformative fair use of a Goldsmith photograph of singer Prince). To be clear, we believe the

Second Circuit got this case very wrong, and we are hopeful that the court will correct its error in

view of Google’s statements about transformative use. See Brief of Amici Curiae 60 Intell. Prop.

Scholars in Support of Petition for Panel Rehearing and Rehearing En Banc, Warhol, 992 F.3d 99

(2d Cir. 2021) (No. 19-2420-cv) (supporting the foundation’s petition for rehearing and arguing that

the Second Circuit panel’s decision is inconsistent with the fair use analysis in Google).

252. See, e.g., Feist Pub., Inc. v. Rural Telephone Service Co., 499 U.S. 340, 361 (1991) (noting

that plaintiffs must prove ownership or a valid copyright and copying of constituent elements of the

work that are original).

253. See supra note 17.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

44 Texas Law Review [Vol. 100:1

copy for purposes of compatibility even when they do so to compete directly

with the copyright owner.254 But the Supreme Court’s decision might not be

read to extend so far. And copyright owners can and will take advantage of

any perceived uncertainty to try to shut down compatibility.

Fair use is, moreover, less desirable from the software industry’s

standpoint than uncopyrightability in that defendants will have to spend

valuable resources in litigating fair use defenses, which are rarely resolved

through motions to dismiss. And the most innovative advances in the

software industry often come from smaller developers who can least afford

to litigate fair use.

B. The Value of Interoperability for Consumers and Creators255

Computer programmers and software companies have long relied on the

pro-compatibility settled case law because they depend on their freedom to

reimplement APIs as part of the invisible infrastructure of modern

computing.256 Computers and the internet “work” because different programs

and devices can communicate with each other. Interoperability makes that

possible.257 Interoperability is the reason you can read a website regardless

of what internet browser you use.258 It’s the reason you can read documents

on a PC even though someone wrote them on a Mac.259 It’s the reason

messages can pass from phone to computer to tablet and back again.260 And

it’s the reason you can use search engines to find data. The modern networked

254. Sony Comput. Ent., Inc. v. Connectix Corp, 203 F.3d 596, 607 (9th Cir. 2000).

255. Portions of this subpart are adapted from Gratz & Lemley, supra note 171.

256. See, e.g., Brief of Comput. Scientists as Amici Curiae in Support of Defendant-Appellee

at 1–3, Oracle V, 886 F.3d 1179 (Fed. Cir. 2018) (Nos. 2017-1118, 2017-1202) (brief of seventy-

six widely recognized computer scientists) (arguing that the “software industry has long relied on

and benefitted from the open nature of application programming interfaces”).

257. Id. at 10–14.

258. Cross-Browser Compatibility Tutorial: Use JS for Cross-Browser Compatibility,

YOUTUBE (Sept. 30, 2015), https://www.youtube.com/watch?v=FGAV4UMvedk

[https://perma.cc/N836-7AQP]; Richard Cornford, Browser Detection (and What to Do Instead),

JIBBERING, http://jibbering.com/faq/notes/detect-browser/ [https://perma.cc/NK7X-QRDH]; What

Is JavaScript?, MDN WEB DOCS, https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First

_steps/What_is_JavaScript [https://perma.cc/JA2V-LF9T].

259. Gina Trapani, The Complete Guide to Mac/Windows Interoperability,

LIFEHACKER (Oct. 19, 2007), https://lifehacker.com/311618/the-complete-guide-to-macwindows-

interoperability [https://perma.cc/QC9A-XPLU]; see also Erik Eckel, Mac vs. Windows

Incompatibility Achieves Irrelevance, TECHREPUBLIC (Feb. 16, 2015), http://www

.techrepublic.com/article/mac-vs-windows-incompatibility-achieves-irrelevance/ [https://perma

.cc/6TLG-KQ5H] (explaining that Microsoft Office compatibility issues have been eliminated).

260. See generally What Is Cross-Platform Software?, BOBOLOGY, https://www

.bobology.com/public/What-is-CrossPlatform-Software.cfm [https://perma.cc/M3FG-CQYE]; see

also Daniel Nations, 4 Ways to Develop for iOS, Android, Windows, and Mac at the Same Time,

THOUGHTCO. (Sept. 24, 2020), https://www.lifewire.com/develop-for-ios-android-windows-mac-

1994294 [https://perma.cc/Z75J-TDXH] (explaining how to simultaneously develop applications

across different platforms).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 45

world would be impossible without interoperability. And interoperability

wouldn’t be possible without freedom to reimplement APIs. They provide

open, documented sets of instructions that third parties can use to ensure that

information can successfully pass back and forth between programs.

Some interoperability is due to the voluntary development of open

standards. Many companies may want to allow others to create compatible

programs.261 For example, the JavaScript standard—which, despite the name,

bears no relationship to Java—was published as an open standard.262

But court decisions refusing to extend copyright protection to APIs

means that third parties can discover and write APIs even for systems whose

creator would prefer they remain proprietary. In some instances, standards

that remain closed are reverse engineered and published by others, opening

those standards to compatible programs.263 That third-party publication

sometimes leads the copyright holder to open an otherwise closed standard.264

But even if it doesn’t, third parties should be free to develop products that

work with the standard. Cory Doctorow calls this “adversarial

interoperability.”265 It is the critical piece of the interoperability puzzle that

copyright rulings either foster or thwart.

Adversarial interoperability is the reason we have a vibrant and

competitive software and hardware industry in the first place. Before the law

endorsed interoperability, IBM was long the dominant maker of computer

hardware, and it controlled what limited market for computer software

existed in the early computer industry for the simple reason that only IBM

knew the APIs necessary to make software run reliably on its computers.

IBM controlled the market for PC-compatible computers in the early 1980s

through its control of the IBM PC BIOS—the set of APIs that permitted the

operating system to communicate with the computer’s processor and other

261. HTML, CSS, and ECMAScript are examples.

262. ECMAScript® 2017 Language Specification (ECMA-262, 8th edition, June 2017), ECMA

INT’L, https://www.ecma-international.org/ecma-262/8.0/index.html [https://perma.cc/PMK5-

683D].

263. Apple Accessory Protocol, NUXX, https://nuxx.net/wiki_archive/A/Apple

_Accessory_Protocol [https://perma.cc/ZM3H-MHML] (disclosing reverse-engineered protocol for

communicating with an iPod).

264. See, e.g., Office File Formats, MICROSOFT (July 20, 2021), https://msdn

.microsoft.com/en-us/library/office/cc313118(v=office.12).aspx [https://perma.cc/M35K-GHXC]

(disclosing Microsoft Office file formats, which were previously proprietary); Using the HomeKit

Accessory Protocol Specification (Noncommercial Version), APPLE DEV., https://developers

.apple.com/homekit/faq/ [https://perma.cc/7QH2-G2K3] (disclosing proprietary Apple HomeKit

Accessory Protocol for noncommercial use).

265. See Cory Doctorow, Adversarial Interoperability, ELEC. FRONTIER FOUND. (Oct. 2,

2019), https://www.eff.org/deeplinks/2019/10/adversarial-interoperability [https://perma.cc/D43D-

TVAN] (defining “adversarial interoperability” as “when you create a new product or service that

plugs into the existing ones without the permission of the companies that make them”).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

46 Texas Law Review [Vol. 100:1

hardware.266 Software developed for the IBM PC was written to

communicate using APIs provided by the IBM PC BIOS. In order to run that

software, competing PC makers needed to provide their own BIOS that could

use those APIs.

In 1984, a company called Phoenix Technologies reimplemented the

IBM PC BIOS API in its own original software code, copying only the

elements necessary for compatibility.267 As with Java, those elements

included a hierarchy of commands that were necessarily the same in both

systems.268 IBM did not take legal action against Phoenix, and the availability

of the Phoenix BIOS led to a proliferation of IBM PC-compatible “clone”

computers from Compaq, Dell, and others.269 That in turn opened the door to

multiple software companies to write programs for the now-accessible BIOS

with the confidence that those programs would run on many different

hardware systems, prompting the development of the modern independent

software industry.

The law’s openness to use of APIs has led, over time, to greater

openness across the computer industry. Software for IBM computers was an

IBM-specific business until Phoenix opened the BIOS, allowing IBM-

compatible PCs. And because IBM had already published the DOS APIs to

allow third parties to write programs for IBM PCs, those third parties could

write for the compatible computers too.

Even after the IBM PC market opened to competition in the 1980s, the

PC ecosystem was still not compatible with other operating system formats

such as Apple or Linux. Once again, APIs led the way towards greater

connectivity. For example, in 1993, open-source developer Andre Julliard

released WINE, a program that allows Windows applications to run on

computers that use the Linux operating system by translating calls to

Windows APIs into the corresponding calls to Linux APIs.270 To do so, it

must use the same hierarchy of function names, just as Android does with

respect to Java. Just as Linux users found it useful to be able to run some

266. The history of IBM in the early computer industry is well-documented. See, e.g., CHARLES

H. FERGUSON & CHARLES R. MORRIS, COMPUTER WARS: HOW THE WEST CAN WIN IN A POST-

IBM WORLD 52–53 (1993) (describing IBM’s early theories of protection against PC cloning);

Russell Moy, A Case Against Software Patents, 17 SANTA CLARA COMPUT. & HIGH TECH. L.J. 67,

71 (2000) (tracing the history of the early computer industry and the role of IBM).

267. James Langdell, Phoenix Says Its BIOS May Foil IBM’s Lawsuits, PC MAG., July 10, 1984,

at 56, https://books.google.com/books?id=Bwng8NJ5fesC&lpg=PA6&pg=PA56#v=onepage&

q&f=false [https://perma.cc/2XHM-XW7B].

268. INT’L BUS. MACH. CORP., IBM PERSONAL SYSTEM/2™ AND PERSONAL COMPUTER BIOS

INTERFACE TECHNICAL REFERENCE 2-17 (1987), http://www.nj7p.org/Computers/

IBM%20PC/work/BIOS_Interface_Technical_Reference.pdf [https://perma.cc/734X-3BBJ].

269. Send in the Clones, COMPUT. HIST. MUSEUM, http://www.computerhistory.org/

revolution/personal-computers/17/302 [https://perma.cc/YJ6V-PS8S].

270. This example is drawn from Gratz & Lemley, supra note 171, at 611–12.

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 47

Windows programs they were familiar with, Windows users—particularly

developers—found it useful to be able to run some Linux programs they were

familiar with.

While WINE compatibility was one-way, it paved the way for

compatibility in the opposite direction. In 2016, Microsoft released the

Windows Subsystem for Linux, which allows Linux programs to run on

Windows, translating API calls in real time to allow the programs to run

unmodified. Microsoft engaged in a “clean room” implementation of the

Linux kernel APIs to ensure that only the API structure, and not any of the

implementing code, was copied.271

Apple remained a holdout, but there too APIs and the development of

common internet standards have made it much more open than it was. In the

1990s, it was essentially impossible to move data or programs from Apple to

PC or vice versa. While Apple still seeks to exercise more control over its

systems than other computer makers, the development of open internet

protocols (and, ironically, cross-platform languages like Java) broke down

that insularity, opening the way for programs to work across the competing,

historically-incompatible PC platforms. Once again, APIs led the way. The

result has been something that seemed impossible only a couple of decades

ago—the ability to move data and programs seamlessly across platforms.

Interoperability is at the backbone of the internet. Indeed, it is not an

exaggeration to say that the internet is at its core a set of open APIs—a simple

protocol that anyone can use to pass packets of data—any kind of data—back

and forth across a computer network. The enormous success of the internet

is attributable to the fact that any device and any program can connect to it

just by following a simple protocol. That led to a greater diversity of

programs and content than the world has ever seen before.272

Interoperability is also critical to the development of the Internet of

Things (“IoT”) that connects a wide array of devices beyond computers.273

271. Windows Subsystem for Linux Overview, MICROSOFT (Apr. 22, 2016),

https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/

[https://perma.cc/LDX9-4469] (“The drivers do not contain code from the Linux kernel but are

instead a clean room implementation of Linux-compatible kernel interfaces.”).

272. See Mark A. Lemley, IP in a World Without Scarcity, 90 N.Y.U. L. REV. 460, 470–71

(2015) (arguing the internet “fundamentally alter[ed] the economics of the creative industries”). In

recent years the internet has been increasingly concentrated in the hands of a few platforms.

Interoperability can help solve that problem too, as we discuss infra.

273. See, e.g., Lu Tan & Neng Wang, Future Internet: The Internet of Things, 2010 3d Int’l

Conf. Advanced Comput. Theory & Eng’g, Aug. 2010, at 379 (“Only if we can solve the

interoperability problem [can we] have a . . . real Internet of Things.”); Developing the

Interoperable Internet of Things, OPEN CONNECTIVITY FOUND. (June 27, 2017),

https://openconnectivity.org/blog/developing-interoperable-internet-things [https://perma.cc/

5ZG9-G6TJ] (indicating that a common language is important to enable development for the

interoperable IoT); Gary Eastwood, IoT’s Interoperability Challenge, NETWORK WORLD (July 5,

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

48 Texas Law Review [Vol. 100:1

IoT by definition depends on autonomous communication among a wide

range of devices. That cannot happen without interoperable standards in the

IoT market.274 The importance of interoperability in the software and internet

environments has been so clearly demonstrated, and so widely accepted, that

most IoT programmers are writing only to open standards in the first place.275

But even where parties contract for interoperability, for instance by using

open-source software, legal interoperability plays a role. It allows

downstream users to avoid an “anticommons” of overlapping and potentially

conflicting contractual commitments.276

Interoperability, then, has been key to innovation in the software

industry. The freedom to interoperate led directly to the unprecedented

explosion of creativity in the software and internet industries in the 1990s

and 2000s. Once programmers could write code that could be plugged into

existing programs, they could compete to offer new tools without having to

build an entire system from scratch or tying themselves to an existing walled

garden.

Finally, interoperability will play an important role in establishing a

right to repair. While consumers have long had the power to tinker with,

2017, 6:03 AM), https://www.networkworld.com/article/3205207/internet-of-things/iots-

interoperability-challenge.html [https://perma.cc/U6YA-4HQQ] (“[I]nterconnectivity comes at a

price, as the popularity increases and the number of devices and networks expands, the lack of

interoperability between [devices] becomes an issue.”); Giancarlo Fortino, Maria Ganzha, Carlos

Palau & Marcin Paprzycki, Interoperability in the Internet of Things, COMPUTER.ORG (Dec. 2016),

https://www.computer.org/publications/tech-news/computing-now/interoperability-in-the-internet-

of-things [https://perma.cc/77BW-JX63] (“[M]any IoT researchers and industry leaders are

focusing on interoperability.”); Interoperability: The Challenge Facing the Internet of Things,

PROPHET, https://www.prophet.com/thinking/2014/02/interoperability-the-challenge-facing-the-

internet-of-things/ [https://perma.cc/GVG3-LBNN] (“[O]ne of the central-most challenges facing

IoT is the enablement of seamless interoperability between each connection.”); James Manyika,

Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs, Jacques Bughin & Dan Aharon,

Unlocking the Potential of the Internet of Things, MCKINSEY DIGITAL (June 2015),

http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-

things-the-value-of-digitizing-the-physical-world [https://perma.cc/3P4J-38AD] (“Interoperability

between IoT systems is critical. Of the total potential economic value the IoT enables,

interoperability is required for 40 percent on average and for nearly 60 percent in some settings.”);

Phillip Tracy, IoT Interoperability: Where It Stands and What Comes Next, RCRWIRELESS NEWS

(Oct. 31, 2016), https://www.rcrwireless.com/20161031/internet-of-things/iot-interoperability-

tag31-tag99 [https://perma.cc/2G5Z-2NJS] (“IoT ecosystems require interoperability to create

seamless programmability of devices or sensors in enabling a world of connected devices.”).

274. See supra note 273.

275. Brian Ray, Open Source Software and Hardware for the Internet of Things, IOT FOR ALL

(June 8, 2017), https://medium.com/iotforall/open-source-software-and-hardware-for-the-internet-

of-things-eca2aa728fa4 [https://perma.cc/W4G5-BG5C].

276. Clark D. Asay, Software’s Copyright Anticommons, 66 EMORY L.J. 265 (2017); see also

Clark D. Asay, Copyright’s Technological Interdependencies, 18 STAN. TECH. L. REV. 189 (2015)

(discussing how “conceptualizing copyright as an interdependent part of a creative system provides

a more useful framework for analyzing the role of copyright, its interdependencies, and potential

solutions related to creative processes”).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 49

modify, and repair the devices they own,277 that freedom is under attack in

the digital world, where restrictive terms of use purport to turn what seems

to be a sale into a license of limited rights the copyright owner can take

back.278 But even if consumers have the legal right to repair their computer

devices, jailbreak their iPhones, or mod their video games, their practical

ability to do so is limited by access to modifications that will work with the

original. Once again interoperability plays a key role, ensuring that people

can write and release the add-ons, fixes, and spare parts needed to make a

right to repair and tinker useful in practice.

The uncopyrightability of APIs isn’t an accident or some sort of

judicially created carve-out from the scope of copyrightable subject matter.

As this section shows, it is part and parcel of the bargain copyright law

strikes, protecting particular creative expression while taking care not to lock

up ideas or functions. APIs serve an important function, and their availability

has led to tremendous innovation—innovation that would have been stifled

had copyright law been interpreted to give a software developer control over

anything that might connect to or work with that software.

C. The Complication of Partial Interoperability

It is important to realize, however, that compatibility is always a matter

of degree.279 Compatibility is often only one-way, even when the same

company makes the compatible products. This is often true of backwards

compatibility, as when new platforms play old games, but new games can’t

be played on old platforms,280 or when a new version of Microsoft Word can

read documents written by the older version but not vice versa. Those are

programs and devices issued by the same company, but they are often not

perfectly compatible for the simple reason that if you add a new feature to a

new system, an older system that lacks that feature can’t implement it.

277. Pamela Samuelson, Freedom to Tinker, 17 THEORETICAL INQUIRIES L. 563, 564–65, 569

(2016).

278. See generally AARON PERZANOWSKI & JASON SCHULTZ, THE END OF OWNERSHIP:

PERSONAL PROPERTY IN THE DIGITAL ECONOMY (2016) (asserting that licenses “mean that you

don’t own the thing you buy”).

279. See, e.g., BAND & KATOH, supra note 21, at 8 (giving the example of an application

running on an operating system without a complete set of interface specifications that is

“interoperable” but nonetheless not as interoperable as possible).

280. See, e.g., Will White, Note, Would You Like to Save Your Game?: Establishing A Legal

Framework for Long-Term Digital Game Preservation, 81 OHIO ST. L.J. 567, 580 n.91 (2020)

(tying game obsolescence to upgrades in hardware and a lack of backwards compatibility); Rob

Dolen, PlayStation Could Beat Nintendo to the Punch with Backwards Compatibility, GAMERANT

(Apr. 1, 2021), https://gamerant.com/playstation-nintendo-backwards-compatibility-ps3-psp-ps-

vita-playstation-now/ [https://perma.cc/3TFE-DN48] (comparing backwards compatibility among

leading video game consoles, including Xbox, where it is a staple of the ecosystem, and PlayStation,

which had scrapped backwards compatibility as a “much requested, little-used feature” but has

moved to restore it).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

50 Texas Law Review [Vol. 100:1

Interoperability is more likely to be imperfect when it is implemented

by third parties rather than the original developer of the interface. Sometimes

developers of interfaces choose not to reveal all the details of its interfaces to

those to whom it licenses the interfaces. Even if they intend to make the

products fully compatible, it is harder to make two different programs work

together seamlessly if they are written and implemented by different

companies that can’t easily coordinate on how their programs change. Perfect

compatibility is less likely still in APIs that have been opened to the public.281

Public interfaces may deliberately be limited by the company that publishes

them.282

What Cory Doctorow calls “adversarial interoperability”283 is even more

commonly imperfect. In these cases, as in Google, one party is trying to write

a program that connects to another party’s system while the other party is at

best not helping and at worst actively trying to sabotage the effort. In that

case, generally the best we can hope for is one-way compatibility in which

the new program emulates or draws data from the old. In the Connectix case,

for instance, the defendant’s software platform for playing Sony PlayStation

games on a PC was only partly compatible with the PlayStation.284 And in

Lotus v. Borland, Borland’s Quattro Pro spreadsheet allowed users to copy

their pre-written macros to use in the new system but didn’t fully emulate

Lotus 1-2-3.285

In the Google case, significant differences existed in the types of tasks

needed for the computing platforms for which the Java API was initially

developed (e.g., enabling a mouse) as compared with the Android

smartphone platform (e.g., enabling GPS). Google and Android app

developers therefore did not need or want total compatibility with programs

written for laptops with the full 166 Java API packages. And Google also

wanted to develop a new and better system that served a variety of purposes

beyond just implementing Java code. In that circumstance, as in many others,

there may be no realistic option but to “fork” the code with partial or one-

way compatibility.

281. BAND & KATOH, supra note 21, at 8.

282. See Complaint at 21, FTC v. Facebook, Inc., No. 1:20-cv-03590 (D.D.C. June 28, 2021),

2021 WL 2643627 (alleging that Facebook’s imposition and enforcement of conditions on access

to APIs “in order to suppress and deter competitive threats to its personal social networking

monopoly” was an illegal anticompetitive practice). Facebook’s motion to dismiss was granted in

June. FTC v. Facebook, Inc., No. 1:20-cv-03590 (D.D.C. June 28, 2021), 2021 WL 2643627.

283. Doctorow, supra note 265.

284. See Sony Comput. Ent., Inc. v. Connectix Corp., 203 F.3d 596, 599 (9th Cir. 2000) (stating

that defendant’s software “emulates” the functioning of the PlayStation console, but it does not play

PlayStation games as well).

285. Lotus Dev. Corp v. Borland Int’l, Inc., 49 F.3d 807, 810 (1st Cir. 1995).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 51

The fact that compatibility is incomplete does not mean, as the Federal

Circuit wrongly suggested,286 that it isn’t important. One-way compatibility

allows companies to improve on software programs without customers being

locked into an obsolete system because of the investment they have made in

learning it or storing their data there.287 It establishes a base of compatibility

that can make interaction between systems easier even if they aren’t fully

compatible (as anyone who has copied and pasted text across programs using

standard tools can attest). It enables new code to be more readily adopted by

allowing developers to draw on their existing skills and knowledge in writing

code for the new platform. And as we discuss in the next section, it makes it

harder for a dominant firm to prevent competition or extend its control into

adjacent markets.

Partial compatibility will also become increasingly important to

historians and archivists. Software platforms change rapidly, and more and

more content and code is written in obsolete languages and stored on obsolete

hardware. Interoperability permits archivists and others to rescue and restore

obsolete programs, games, and text and to make sure that old content can

remain accessible and relevant on new platforms.288

D. Beyond Copyright: Contract, Antitrust, and Interoperability

As we noted in the last two parts, interoperability has substantial

benefits for consumers and innovation. But arguably its most important

benefit concerns market structure and competition. Interoperability benefits

smaller competitors and newer companies by preventing established

incumbents from tying up existing customers and so locking them out of the

market.

Interoperability is particularly important to startups. Companies that

develop apps for mobile phones, for instance, are often small. They may not

have the ability to write several different versions of a program from scratch,

one for each hardware platform or incompatible programming language,

much less to separately negotiate agreements with each such platform

provider in the economy. By allowing an app developer to reach the widest

possible market, legal protection for interoperability increases the number of

286. Oracle V, 886 F.3d 1179, 1206 (Fed. Cir. 2018).

287. On problems of lock-in effects, see Mark A. Lemley & David McGowan, Legal

Implications of Network Economic Effects, 86 CALIF. L. REV. 479 (1998); CARL SHAPIRO & HAL

R. VARIAN, INFORMATION RULES: A STRATEGIC GUIDE TO THE NETWORK ECONOMY (1999);

Joseph Farrell & Paul Klemperer, Coordination and Lock-In: Competition with Switching Costs and

Network Effects, in 3 HANDBOOK OF INDUSTRIAL ORGANIZATION 1967 (Mark Armstrong & Robert

Porter eds., 2007); S.J. Liebowitz & Stephen E. Margolis, The Fable of the Keys, 33 J.L. & ECON.

1 (1990).

288. For a discussion of this problem, see Mark A. Lemley, Disappearing Content, 101 B.U. L.

REV. 1255 (2021).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

52 Texas Law Review [Vol. 100:1

creative new works produced each year. It also ensures that no one company,

no matter how dominant its platform, gets to decide what web pages you can

access, what files you can share, or what programs you can download.

Without the legal ability to use APIs, software developers would be at

the mercy of platform and programming giants who could decide whether,

when, and how anyone could write or use a computer program that ran on

their system. Startups will not invest in new products—for mobile phones or

video games or the Internet of Things—without confidence that their

products will work on the dominant platforms. That is why the risk of

overprotecting copyright is so much greater in software than in other areas.

Giving too much protection to a song may incrementally discourage the

creation of somewhat similar songs. Giving copyright owners control over

interoperability risks shutting down the software development ecosystem

altogether.

Conversely, interoperability offers the potential of opening the “walled

gardens” that have come to dominate much of the internet today.289

Facebook, Apple, Microsoft, and (to a lesser extent) Amazon and Google all

benefit from a large customer base locked into their systems by investment,

choice, learning, or simply inertia. For a variety of reasons, the wave of

Schumpeterian competition that has periodically dethroned prior dominant

firms (IBM, AT&T, Yahoo!, MySpace et al.) has stalled in the last two

decades.290 But interoperability offers the promise of restarting that

competition, allowing, for instance, a new, privacy-focused social media

company to grow its own customer base while connecting into the Facebook

and Instagram networks of those customers.291 The new European Digital

289. See, e.g., Hunter, supra note 18 (explaining that “legal scholarship is locked up inside the

‘walled gardens’ of commercial databases”); Mehra, supra note 18 (asserting that “[i]n the worlds

of technology and cyberlaw, the term ‘walled garden’ has become an epithet to epitomize a

proprietary (and likely sterile) community”); Lastowka, supra note 18 (discussing digital walled

gardens in the context of copyright law).

290. For one explanation, and some suggestions about what can be done about it, see Mark A.

Lemley & Andrew McCreary, Exit Strategy, 101 B.U. L. REV. 1 (2021).

291. See, e.g., Michael Kades & Fiona M. Scott Morton, Interoperability as a Competition

Remedy for Digital Networks (February 2021) (unpublished manuscript) (on file with authors),

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3808372 [https://perma.cc/W3S6-HWQL]

(explaining how an interoperability requirement can remedy monopolization by engendering robust,

disruptive marketplace competition); Cory Doctorow, Tech Trustbusting’s Moment Has Arrived,

PLURALISTIC, PLURALISTIC (Feb. 20, 2021), https://pluralistic.net/2021/02/20/escape-velocity/

#trustbusting-time [https://perma.cc/9RYJ-4X5G] (suggesting means of government and

community action to protect interoperators for the sake of competition); Bennett Cyphers & Cory

Doctorow, Privacy Without Monopoly: Data Protection and Interoperability, ELEC. FRONTIER

FOUND. (June 11, 2021), https://www.eff.org/files/2021/06/14/privacy_without_monopoly.pdf

[https://perma.cc/HYK5-KKHG] (unpacking how competitive pressures derived from

interoperability could foster better consumer control over privacy data).

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

2021] Interfaces and Interoperability After Google v. Oracle 53

Markets Act requires operating systems to permit interoperability and

requires device makers to allow sideloading of apps.292

Opening up the walled gardens will take more than just getting

copyright law right. Companies that want to close their systems have used

standard-form contracts, terms of service, and even a federal computer crime

statute to try to prevent competitors from writing interoperable programs.

Protecting interoperability means turning away contract and Computer Fraud

and Abuse Act (CFAA) claims that dominant sites have used to prevent third

parties from offering products or services that interconnect with dominant

firm sites.293 It may also mean favoring antitrust enforcement that demands

structural separation, or at least imposes nondiscrimination rules on self-

dealing by vertically integrated monopolists,294 and perhaps using antitrust or

292. Proposal for a Regulation of the European Parliament and of the Council on Contestable

and Fair Markets in the Digital Sector (Digital Markets Act), at arts. 5(e), 6(1)(c), COM (2020) 842

final (Dec. 15, 2020), https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

52020PC0842&from=en [https://perma.cc/5J9M-VSDS].

293. See, e.g., Facebook, Inc. v. Power Ventures, Inc., 844 F.3d 1058 (9th Cir. 2016) (holding

that Facebook could use the CFAA to prevent Power Ventures from scraping its social graph);

Jonathan Mayer, Cybercrime Litigation, 164 U. PA. L. REV. 1453 (2016) (arguing that computer

abuse legislation, including the CFAA, is overbroad and ineffective); Orin S. Kerr, Cybercrime’s

Scope: Interpreting “Access” and “Authorization” in Computer Misuse Statutes, 78 N.Y.U. L.

REV. 1596 (2003) (discussing why courts have construed unauthorized access statutes in an overly

broad manner that threatens to criminalize a surprising range of innocuous conduct involving

computers). More recently, courts in HiQ v. LinkedIn and Sandvig v. Barr have declined to apply

the CFAA to crawling of a public web page in violation of terms of service. HiQ Labs, Inc. v.

LinkedIn Corp., 938 F.3d 985 (9th Cir. 2019); Sandvig v. Barr, 451 F. Supp. 3d 73 (D.D.C. 2020).

The Supreme Court decision this term in Van Buren v. United States, No. 19-783 (U.S. June 3,

2021), limiting the reach of the CFAA is a big step forward for interoperability. Without terms of

service and CFAA laws standing in the way, social media companies could help users port their

friends and history to a new platform, making competing platforms more realistic. See, e.g., Charles

Duan, Hacking Antitrust: Competition Policy and the Computer Fraud and Abuse Act, 19 COLO.

TECH. L.J. (forthcoming 2021) (explaining that the broad reading of the CFAA enables companies,

social media platforms in particular, to stop competitors from building competing services); Mike

Masnick, Protocols, Not Platforms: A Technological Approach to Free Speech, KNIGHT FIRST

AMEND. INST. COLUM. U. (Aug. 21, 2019), https://knightcolumbia.org/content/protocols-not-

platforms-a-technological-approach-to-free-speech [https://perma.cc/LD6G-YMEF] (“Moving us

back toward a world where protocols are dominant over platforms could be of tremendous benefit

to free speech and innovation online.”); Corynne McSherry, Want More Competition in Tech? Get

Rid of Outdated Computer, Copyright, and Contract Rules, ELEC. FRONTIER FOUND. (Dec. 20,

2018), https://www.eff.org/deeplinks/2018/12/want-more-competition-tech-get-rid-outdated-

computer-copyright-and-contract-rules [https://perma.cc/7JXC-5JC9] (explaining how the CFAA

harms competition by allowing companies to legally block cross-platform accessibility tools);

Thomas E. Kadri, Platforms as Blackacres, 68 UCLA L. Rev. (forthcoming Feb. 2021)

(“[P]latforms have used cyber-trespass law to . . . block[] or chill[] academics, journalists, and

competitors from accessing information they need to research digital life.”).

294. Khan, supra note 18. The problem of discriminatory refusals to deal by vertically

integrated monopolists is particularly stark when the monopolist excludes access to a competitor.

Apple, for instance, has made it difficult for competing music services like Spotify to run on its

phones, and has banned “side-loading” altogether, requiring that all apps on the phone be sold

1LEMLEY.PRINTER (DO NOT DELETE) 11/28/2021 7:47 PM

54 Texas Law Review [Vol. 100:1

other tools to force interoperability.295 But none of those efforts will do much

good at encouraging compatibility and breaking the hold dominant tech

incumbents have on their markets if copyright stands in the way. Copyright

law standing alone can’t ensure interoperability. But a misinterpretation of

copyright law could doom it.

It may seem ironic that a Supreme Court victory for Google holds the

key to undercutting the power of modern tech firms. But interoperability has

always worked to benefit upstarts and new entrants, whether it was IBM

clones thirty years ago, Android a dozen years ago, or those who would like

to bypass smartphone app stores today.

Conclusion

The Supreme Court in Google v. Oracle took an important step in

protecting the vibrant, open software development process from the threat of

a resurgent copyright law. But it also missed an important opportunity to

make clear what most courts had settled twenty-five years ago but which is

once again being debated: the functional elements of APIs aren’t

copyrightable. Courts should refuse to allow anyone to control the

components necessary to make programs work together.

through the app store, taking a whopping thirty percent of all their revenue, and refusing to allow

apps that might circumvent that monopoly. Complaint for Injunctive Relief at para 3., Epic Games,

Inc. v. Apple Inc., 439 F. Supp. 3d 817 (N.D. Cal. 2020) (Case No. 4:20-cv-05640-YGR); Seth

Schiesel, Apple Rejects Facebook’s Gaming App, for at Least the Fifth Time, N.Y. TIMES (June 18,

2020), https://www.nytimes.com/2020/06/18/technology/apple-ios-facebook-gaming-app.html

[https://perma.cc/JS9E-PBAH]; Damien Geradin & Dimitrios Katsifis, The Antitrust Case Against

the Apple App Store, J. COMPETITION L. & ECON. (forthcoming 2021). Recent House bills require

platforms not to discriminate in favor of their own apps. See American Choice and Innovation

Online Act, H.R. 3816, 117th Cong. (2021) (providing that certain discriminatory conduct by

covered platforms should be unlawful); Ending Platform Monopolies Act, H.R. 3825, 117th Cong.

(2021) (promoting competition and economic opportunity in digital markets by eliminating the

conflicts of interest that arise from dominant online platforms’ concurrent ownership or control of

an online platform and certain other businesses); ACCESS Act of 2021, H.R. 3849, 117th Cong.

(2021) (requiring a covered platform to maintain a set of transparent, third-party-accessible

interfaces to facilitate and maintain interoperability with a competing business).

295. See Chinmayi Sharma, Concentrated Digital Markets, Restrictive APIs, and the Fight for

Internet Interoperability, 50 U. MEM. L. REV. 441 (2019) (discussing how formal antitrust

investigations by the FTC could help shape acceptable standards for API design and expectations

for online interoperability); Cyphers & Doctorow, supra note 291 (proposing a policy to force

interoperability).

